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Chapter 1 

Introduction

1.1 Human vision and technology
Human vision plays a major role in everyday life. We use it to gather information about the
environment around us. If a person is physically close to an object of interest, he can inspect
the object by vision. The object emits or reflects light, the light propagates in space, and
finally enters the viewer’s eyes. The brain then draws conclusions about the presence and
state of the object and decides what actions to take, such as “do nothing”, “take”, “eat” or
“run away as fast as you can”.

Human vision has its limitations. Whenever the distance between the scene and the viewer
is too large, or the scene is too small, the resolution of the eyes is too small to see any
details. This can be justified by the fact that small and distant objects are often less
important than large and nearby objects. However, the drive to explore the world and
improve living standards (and less peaceful reasons) made us develop tools to enhance or
assist human vision.

The telescope is the first device for the inspection of distant objects, or in short, television.
Although no precise date is known of its invention, lenses forming its main component have
been found in Greece dating from about 2000 BC [Ceo]. The telescope requires a long path
between viewer and object in which the light can travel freely, without being blocked by
some other object. For relatively small distances on the earth’s surface, the telescope is a
powerful tool. For long-distance television, however, high magnification factors make
accurate aiming of the telescope more and more difficult. Objects easily get in between the
light path, or the curvature of the earth intervenes. The inspection of our universe seems the
only application in which these limitations play a minor role.

The first television system in the usual sense of the word is the machine invented by Carey
in 1875 [Ebo], see Figure 1.1. It records an image with a number of light-sensitive devices
arranged in a 2-D array. The resulting electric signals are transmitted in parallel and fed into
a 2-D array of light bulbs, which visualize the image. This system was simplified
substantially by the introduction of the mechanical scanner by Nipkow [Ebo]. A fast
rotating disk scans the image linewise and the “pixels” in the image are transmitted
sequentially, requiring only one electric channel.
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Figure 1.1  The Carey television system.

In both the Carey and Nipkow television systems, three different parts can be distinguished,
which are also present in the modern visual communication systems of today:

 • Acquisition of the scene
 • Transmission in some kind of representation
 • Visualization of the scene

Through time, the list of available technology for 2-D image-based visual communications
has grown to a substantial size [Davi92]. For scene acquisition, we have many types of
Cathode-Ray-Tube based and Charge Coupled Device (CCD) cameras. For scene
visualization we have displays such as Cathode Ray Tubes (CRT), Liquid Crystal Displays
(LCD) and plasma displays. The representations used are analog (PAL, NTSC, SECAM,
HDMAC, MUSE), digital (CCIR601) or efficiently coded digital (MPEG2, MPEG4). To
deal with digital signals, we have accurate analog-digital converters, and computers or
Digital Signal Processors (DSP), which become more powerful every day. For transmission
we have high-bandwidth channels on the basis of cables (coax or glass fiber) and free-air
electromagnetic waves (ground and satellite links).

We also would like to store the scene to be able to visualize it at some later time instant.
Examples of early systems that have storage capabilities are photography and motion film,
which are based on celluloid. More recently video recorders have been developed, which
have as a basis tape and magnetic/optical discs.

All this technology allows us to acquire, transmit, store and reconstruct visual information
about a scene. At the start, the introduction of long-distance vision was possible only if
several concessions were made, such as low-resolution black-and-white still-image
photography. Currently the standard of television systems includes high-resolution color
video imagery. What is still missing?

1.2 Systems for 3-D visual communication
The ultimate goal in communication can be thought of as the holodeck from the popular
science fiction TV series “Star Trek”. Figure 1.2 depicts such an ideal system. Two scenes
A and B are somehow merged into a new virtual scene C. The new scene C allows for full
interaction between A and B, including sight, hearing, smell, touch and taste.
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Figure 1.2  The ideal communication system merges two scenes completely. The holodeck from the
popular TV series Star Trek is such a system.

The holodeck is still science fiction. At this point, we will drop the more difficult senses
touch, smell and taste. Especially for the touch sense, the current state of technology is
nowhere near to handling it. The remaining audiovisual communication system is still much
more than a television set, as it provides 3-D impressions of the scene. The applications for
such a system are obviously enormous. It may enhance the effectiveness of education and
interpersonal communication (videoconferencing), enable remote surgery or expert
consultancy in the medical areas, provide a means for remote maintenance in hazardous
industrial environments, or increase the impact of news or movie broadcasts, entertainment
and games, expositions (musea and galleries) and advertising.

We will concentrate on the visual part of the 3-D communication system (much work has
already been done to include 3-D sound impressions, e.g. surround processors). A rapidly
increasing number of researchers are working on different types of 3-D visual
communication systems, such as stereo television systems [Dist95] and holographic systems
[Luce97]. In the recently finished European PANORAMA project [Pano98a], a so-called
multi-viewpoint system was developed and built. Its properties are more or less in between
the stereo and holographic systems, combining the superior quality of holograms with the
technological implementability of the stereo system.

Next, we will examine what to expect from a 3-D visual communication system compared
to normal television. Then we review classic, current and future candidates for 3-D systems.

1.2.1 Visual cues to be introduced by 3-D systems
In visual communication, current television systems provide “flat” 2-D images of our world,
which clearly has three dimensions. To be able to evaluate the performance of any 3-D
visual communication system, let us explore what a viewer is able to observe in the ideal
holodeck system, or equivalently, in normal surroundings.

All objects in a scene emit or reflect light rays in different directions, with different
intensities and colors. The viewer only observes the light rays that pass through the pupils
of his eyes in the direction of the retinas. On the retinas 2-D images of the scene are formed,
containing photometric information. To extract geometric and more complex semantic
information, the brain uses several cues that can be categorized in psychological and
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physiological cues [Ebo]. The psychological cues involve knowledge about the scene, such
as known shapes of certain objects, the way shade works, occlusion (objects that move in
front of each other) relative size between objects, perspective and color. These cues are all
provided by the current television systems.

The physiological cues are the absent cues that we would like to introduce by 3-D
communication systems, see Figure 1.3. These cues are more related to direct measurable
physical properties, such as the accommodation of the eye lens and the convergence of the
eyeballs towards an object of interest. They all have something in common: they are related
to our “3-D” experience of the scene. We categorize them as follows by scale of viewer
position (large), inter-eye distance (medium) and pupil size (small).

L
R

L R

retina
lens

object

(a) (b) (c)

Figure 1.3  Visual cues to be introduced by 3-D communication systems, a) motion parallax, b) stereo,
and c) accommodation.

Viewer position: motion parallax cue
If the viewer walks or moves his head, his viewpoint changes. For a continuously moving
viewer, nearby objects seem to move faster than objects that are far away. This is called the
motion parallax cue. Figure 1.3a shows a viewer moving in a train. The nearby trees move
faster than the distant trees. Besides providing the depth of objects, this cue might be used
to assist the balancing organ since it provides direct feedback of the viewer’s own motion.

Inter-eye distance: stereo cue
The viewer has two eyes, separated by some moderate distance. This provides him with two
slightly different viewpoints, which enable him to determine the distances to the objects.
This is called the stereo cue. Figure 1.3b shows the different positions of the two birds on
the viewer’s retinas, a cue for their difference in distance.

Pupil size: accommodation cue
The pupils of the eyes have finite size and thus, from each point of the object, several light
rays forming a cone enter each eye. The eye lens diffracts all these light rays, which then
form a cone within the eyeball. If the lens is accommodated to the correct distance to the
point of interest, the apex of the cone is at the retina, producing a sharp image of that point,
see Figure 1.3c. The required accommodation provides a cue for the distance to the object.
This is called the accommodation cue. The cue also provides a means to focus attention on
the object of interest, since all objects at other distances become blurred.
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All three cues mentioned invoke relatively simple geometric models rather than complex
semantics about objects. This fact is comfortable from a technological point of view, since
these cues are the ones we would like to integrate into 3-D visual communication systems.

1.2.2 Classic, current and future 3-D systems

Normal television
A normal television set presents the same image to both eyes, and thus lacks the stereo cue.
To a certain extent, the motion parallax and accommodation cues are provided. However,
they are not related to the movement and position of the viewer, but to those of the camera.
Presumably, when looking at a scene at a TV screen, a viewer imagines himself as being
physically near the displayed scene and then identifies himself with the camera. However,
the actual position and movement by the viewer does not relate in any way to the presented
motion parallax cue. The accommodation of the eyes is related only to the distance between
the viewer and the display, and thus, independent of the selected point of interest in the
scene. Compared to the ideal situation of actually being present in a scene, a television set
visualizes a scene that has the geometry of a flat rectangle (the screen) on which rich and
dynamic photometric effects are shown.

Stereo systems
The first system that provided the stereo cue was stereo photography [Turi]. It has been
quite a success in books, expositions and toys such as the View Master, which is still
available (see Figure 1.4). These systems require the viewer to look into two tubes that
provide different images in each eye.

Figure 1.4  The View Master, a system introducing the stereo cue. It provides a sense of depth.

Later on, stereo film and TV were not a large breakthrough, since a severe concession was
made to allow multiple viewers at the same time, called anaglyphy. The images for the left
and right eye were shown simultaneously on the same display with different colors: one was
red, the other cyan. Each of the viewers wore red/cyan glasses and observed the two images
in their left and right eyes separately. Unfortunately the completely different colors are a
good reason to complain about a headache. Other systems have been devised to overcome
this, such as polarization and LCD shutter glasses [Sext99]. The latter was used in the
European RACE DISTIMA project [Dist95], where a high-quality and full-color stereo
system was built for the first time.

For all stereo television systems, the stereo cue is introduced without motion parallax and
lens accommodation. The absence of motion parallax results in geometric distortion of the
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visualized scene [Rede00]. Figure 1.5 shows that only one viewer can observe the scene
correctly. This viewer must remain still at a specific and fixed position relative to the
display.

P

stereo display

viewer at
correct position

viewer at
other position scene point at

distorted position

correct scene
point

P’

Figure 1.5  Stereo without motion parallax. Only a single viewer at a specific, fixed viewpoint observes
the scene correctly. Any other viewpoint results in geometric distortion.

The absence of the accommodation cue results in a conflict between the accommodation
and convergence of the eyes [Herm71, Rede00], see Figure 1.6. The eye lenses are
accommodated to the display, while the eyes are rotated both to converge on the scene point
of interest. This provides the brain with two conflicting depth cues.

lens accomodation

convergence of eyes

stereo
display

Figure 1.6  Stereo without accommodation produces the accommodation-convergence conflict.

Thus, although a stereo system provides an impression of depth, the brain is not provided
with three consistent cues. This might be experienced as being worse than normal television
systems, where none of these three cues are present. The design of a stereo setup that
minimizes these discomforts for all viewers is a complex task, involving careful setup of
cameras, display, and position of the viewers [Dist92, Herm71, Past91, Kutk94, Ariy98].

Fixed multi-viewpoint systems
For the motion parallax cue, several systems have been made. The first is xography,
introduced in 1964 for the well-known 3-D postcard [Gisc93], see Figure 1.7. A scene is
recorded by a normal camera from several viewpoints. The images are then combined in
some special way and printed on the card. A special sheet of lenses is put on top of the card,
which gives it a rough surface. When one looks at the card in different directions, two of the
original images each reach on of the eyes. Since no glasses are required, this kind of
stereoscopy is referred to as autostereoscopy. For a stereo system the number of images is
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just two, and only the stereo cue is provided. When the number of images exceeds two, the
system is a so-called multi-viewpoint system. Movement of the viewer’s head equals
selection of a pair of images, corresponding to the new viewpoint. Effectively, the motion
parallax cue has been added. However, the viewpoints are restricted to a fixed and discrete
range.

Figure 1.7  The introduction of motion parallax by xography or 3-D postcard. It provides a limited,
discrete range of viewpoints.

The same principle can be used in electronic displays by placing a special sheet of lenses in
front of the display, a so-called lenticular screen. Currently, these displays are commercially
available with about ten images [Phil]. Both the 3-D postcards and the lenticular screen
displays are still not perfect. They do not provide the accommodation cue. A special version
of a multi-viewpoint display is described in [Kaji97], with a number of viewpoints as high
as 45. If the allowed range of viewer motion is as low as 10 cm, the resolution of the motion
parallax cue is then about 2 mm, enabling even multiple viewpoints within each pupil of the
viewer. It was reported that this effect produces the accommodation cue. The 10 cm
viewing range minus the inter-eye distance provides only a few centimeters of motion
parallax. Effectively, the accommodation cue was introduced at the cost of the motion
parallax cue.

The drawback of all these approaches is that only a discrete number of viewpoints is
available, which have been selected during the acquisition of the scene.

Adaptive multi-viewpoint systems
A different type of multi-viewpoint system provides only two images at the same time, but
adapts these to the current position of the viewer. This restricts the number of viewers to
one, but the motion parallax can be continuous in any range. Recently, such a system has
been built for the first time in the European Community sponsored PANORAMA project
[Pano98a], see Figure 1.8. The real-time adaptation of the images requires a large amount
of digital processing. In the project, this was realized by dedicated hardware that could
perform stereo image interpolation. An autostereoscopic display was used, that adapts its
lenticular screen to the current positions of the viewer’s eyes. The viewer did not need to
wear glasses.

The adaptive multi-viewpoint system is able to produce the stereo and continuous motion
parallax cues. Depending on future developments in autostereoscopic displays, the
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accommodation cue may be incorporated. This requires at least two views per pupil, so four
in total. To handle more than one person, the number of views goes up linearly with the
number of persons.

Original
images

Viewer adapted
images

Stereo
camera

Viewpoint adaptive
stereo image
interpolation Autostereoscopic

display

eye positions

Figure 1.8  Continuous motion parallax produced by the PANORAMA system via image interpolation. It
requires state-of-the-art real-time signal processing, implemented in hardware.

Holographic systems
For the future, it seems that hologram technology is the most promising candidate for 3-D
visual communication systems: an infinite number of viewpoints in a continuous range are
provided simultaneously. This enables all three cues for multiple viewers without glasses. In
a hologram, a photograph with a very high-resolution is used to record so-called fringe
patterns, or interference patterns of light that is reflected by the scene. The patterns contain
all information necessary to reconstruct the scene visually for any viewpoint. The patterns
have the scale of the wavelength of visible light, which is about 500 nm. A hologram of any
reasonable size thus contains a tremendous amount of information. At this point, technology
only allows high-resolution full-color holography for still images. Prototype real-time
systems, so-called holovideo systems, have been built with concessions to size, resolution
and color of the scene [Luce97], still requiring a massive parallel supercomputer to process
all data.

Overview
Table 1.1 gives an overview of the systems mentioned and their characteristics. All these
systems are so-called “through-the-window” systems, see Figure 1.9. They use a planar
display to visualize a 3-D scene to the viewer, which allows the viewer to observe the scene
as if looking through a window (the display) [Sext99]. The display can only reconstruct
light rays that pass through it. Clearly, walking around to the back of the display does not
provide us with a look at the back of the scene, thus limiting the motion parallax capability.

The display and the current positions of the viewer’s eyes define a pyramid-shaped visibility
region in which the virtual scene must reside. When the viewer moves, the region moves.
This forms a restriction on the scenes that can be visualized, or equivalently, on the position
and gaze direction of the viewer.
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System Technology
# viewers with
correct scene
visualization

Cues provided

Stereo Motion Accomo-
parallax dation

Photography / TV
classic
current

0 - - -

Stereo
classic
current

1 √ - -

Fixed
multi-viewpoint

current 1..N √ restricted future

Adaptive
multi-viewpoint

current 1 √ √ future

Holography future ∞ √ √ √

Table 1.1  Systems for 3-D visual communication.

eyes of
viewer window

(display)

inside pyramid:
visualized

virtual scene

outside pyramid:
surroundings viewer

(real scene)

Figure 1.9  A through-the-window based 3-D display system.

For example, a very large scene can only be visualized if it is positioned far behind the
display, where the pyramid is wide enough to contain it. Then, the viewer cannot change his
viewpoint, since in that case the pyramid would move away from the scene. This leads to a
severely reduced motion parallax possibility. If the system reacts by repositioning the scene
into the visibility pyramid, the viewer will notice that the scene ‘follows’ his movements,
which is very unnatural. In stereo systems without viewpoint adaptation, this is what
effectively happens (in Figure 1.5, the scene point automatically follows the visibility
region).

Several solutions are available to overcome the limitations of the window-based display
systems. First, we can enhance these systems by providing the viewer with a means to
reposition and scale the visualized scene manually [Rede00]. Walking around the scene to
see the back can be simulated by manual rotation of the scene. By appropriate scaling and
translation, the scene can be visualized centered in the display. This gives the viewer almost



10 Chapter 1  Introduction

180° of motion parallax, while the virtual scene remains in the visibility region. In addition,
this minimizes the accommodation-convergence conflict. This is at the cost of the scale
correctness of the scene visualization.

Another solution is provided by a different system, called the immersive 3-D system. It
completely surrounds the viewer, or his eyes, to allow for all positions and gaze directions.
The system comes in two different sizes. In the CAVE concept [Cruz93], the viewer can
walk freely within a cube of 3x3x3 meters. On four or five of its faces, stereo images are
displayed, continuously adapted to the viewer’s position. Thus, it is based on four or five
adaptive multi-viewpoint systems working simultaneously. A much smaller immersive
system only covers the eyes of the viewer by means of a Head Mounted Display [Hmd]. In
this case two adaptive multi-viewpoint systems are fixed to the viewer’s head, each of them
providing only a single monoscopic image.

1.3 Scope of the thesis
In this thesis, we will consider a “through-the-window” based adaptive multi-viewpoint
system. Figure 1.10 shows this system dotted, in the context of all previously mentioned
communication systems. We will concentrate on the specific implementation depicted in
Figure 1.11, which was built in the PANORAMA project. The main application will be 3-D
videoconferencing.

Multi-viewpoint systems

Ideal communication : Holodeck

 Visual communication only

Immersive Through the window

HMD CAVE TV HolographyStereo TV

basis for

Adaptive
viewpoints

Fixed
viewpoints

Figure 1.10  Overview and context of 3-D visual communication systems.

The PANORAMA system is based on stereo equipment. Scene acquisition is performed by
a stereo camera and scene visualization by a stereo display. In between, a 3-D scene model
is transmitted. Signal processing is needed to transform the stereo data into a 3-D model
(analysis) or vice versa (synthesis). In the synthesis part, the position of the viewer’s eyes
has to be measured to allow for viewpoint-adaptive scene visualizations.
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Figure 1.11  The PANORAMA adaptive multi-viewpoint system. It employs scene acquisition with a
stereo camera and scene visualization with a stereo display.

We will deal with three tasks: stereo image analysis, stereo image synthesis and the overall
PANORAMA system design including the choice of the scene model. We do not consider
transmission, efficient coding or storage of the scene model. Further, we use commercial
available cameras, (auto-) stereoscopic displays and eye trackers [Orig, Phil, Ster]. Next we
will elaborate on the stereo image analysis, stereo image synthesis and system design tasks.

1.3.1 Acquisition of a 3-D scene with a stereo camera
The principle of acquiring 3-D information with a stereo camera is shown in Figure 1.12.
The internals of two cameras are shown, comprising lenses and image planes. A
correspondence field describes a pixel-dense set of pixel pairs in the stereo image pair. Each
such pair of pixels is lit by the same scene point by two light rays. If the two light rays are
constructed backwards, from the pixels through the lenses towards the scene, their
intersection yields the 3-D coordinates of the scene point. This process is called
triangulation. It requires that the position and orientation of the two cameras (lens and
image planes) are known. Together these parameters form a geometrical model for the
stereo camera.

Image plane

lens

Camera

Corresponding
points

scene

Correspondence
field

b

αStereo
camera model

b , α , ....

Figure 1.12  The acquisition of a 3-D scene by a stereo camera requires two tasks. By correspondence
estimation, pixel pairs are found that originate from the same scene point. By camera calibration, a
geometrical model for the cameras (position and orientation of image planes and lenses) is found.
Together, for each pixel pair two light rays can be reconstructed. Their intersection yields the 3-D
coordinates of a scene point.



12 Chapter 1  Introduction

The acquisition of the camera parameters and the correspondence field is done by camera
calibration and correspondence estimation respectively. We elaborate on these aspects next.

Stereo camera calibration
Camera calibration emerged first in photogrammetry [Slam80] and has been studied for
many years [Wolt78, Tsai87, Faug93, Pede99]. It can be performed before  recording the
actual scene by so-called fixed calibration. In this method, a special object with an
accurately known geometry and photometry is recorded by the cameras. By detecting
special points of the object (markers) in the images, and using the object’s known geometry,
one can calibrate the cameras accurately. The drawback of this method is that it requires
user interaction and the accurate (expensive) manufacturing of the calibration object.
Further, each time a change is made in the camera setup, such as zooming in or out, the
calibration has to be repeated

Current research is devoted more and more to self-calibration, in which no user interaction
and no object are needed [Arms96, Boug98, Eela99, Faug92, Rede98d]. Self-calibration is
performed on the basis of a correspondence field, obtained from an image pair of the scene
after correspondence estimation. The absence of accurate geometric knowledge about the
scene makes it harder to estimate the camera parameters. First, since we have no reference
to the standard SI meter, the absolute scale of both the camera geometry and the scene
cannot be obtained. Secondly, it can be proven that at most seven parameters can be
obtained if the cameras have ideal lenses [Faug93]. Any stereo camera model that has more
parameters results in ambiguities. So, for successful calibration we need extra constraints or
knowledge [Deve96], such as a known pixel aspect ratio [Poll98].

We will investigate fixed and self-calibration algorithms. Our main goal will be to unify
these two approaches. We will design them both in a similar and flexible fashion using the
Bayesian probability framework. We will examine lens distortion in detail and show that its
incorporation in self-calibration enables us to estimate more than the aforementioned 7
parameters. This increases the applicability of self-calibration.

Correspondence estimation
For correspondence estimation, a tremendous amount of algorithms can be found in
literature. They range from feature matching [Barn80, Liu93], block matching [Acca95,
Haan92, Kana94, Hend96], pel-recursive [Biem87, Börö91] and optical flow techniques
[Horn86, Enke88, Tsai97]. In the past years, more and more algorithms are designed using
the Bayesian probability framework [Drie92, Chan94, Heit93, Konr92, Teka95b, Stil97,
Woo96] on the basis of Markov Random Field models, introduced in image processing in
[Gema84].

Many of these algorithms perform so-called motion estimation, defined for objects in  two
frames from an image sequence from a single camera. Correspondence estimation
algorithms for stereo images from calibrated cameras are called disparity estimation
algorithms [Cox96, Inti94, Fran96, Ohta85, Rede98a]. It can be shown that for stereo
images, all correspondences must lie on lines in the images, the so-called epipolar lines
[Faug93, Truc98]. The position of these lines is only known if the cameras are calibrated. In
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this case, the search space for the correspondences has a one-dimensional nature along these
lines.

For stereo images from uncalibrated cameras, the position of the epipolar lines is not known
in advance. Therefore we have to resort to correspondence algorithms that search in a 2-D
way all over the images, similar to motion estimation algorithms. This severely increases the
computational complexity. In such cases, a three-step approach is often used [Poll98], in
which first a low number of accurate correspondences is estimated involving a two-
dimensional search with pre-defined features such as corners. The feature correspondences
are then used for self-calibration of the cameras. After calibration, the position of the
epipolar lines is known and the more efficient (one-dimensional) disparity estimation can be
performed to obtain a pixel-dense correspondence field.

We will derive new correspondence estimators for stereo images from both calibrated and
uncalibrated cameras. For this we first set up our requirements for the estimator. We will
review current correspondence estimation algorithms thoroughly and select the Bayesian
framework as the ideal tool for our estimators. A detailed examination of the steps in this
framework will lead us to several new findings that are included in our estimators. A major
goal is the development of an estimator that combines high quality results with low
computational requirements. Further we require the estimator for uncalibrated cameras to be
robust for rotational and scale differences between the images. This is required for self-
calibration of a camera pair with unequal orientation and zoom factors.

1.3.2 Visualization of a 3-D scene on a stereo display
For the viewpoint-adaptive visualization of a 3-D scene on a stereo display, many image
synthesis algorithms can be found in literature. However, mostly image formation is
considered for the images from virtual cameras [Faug96, Fuji96, Levo96], often restricted
to viewpoint interpolation of the original stereo images [Chup94, Fran96, Rede97d, Seit95,
Tsen95, Veig96]. It is not clear whether the images formed by these algorithms can truly
visualize a 3-D scene on a display without geometrical errors. Further, no analyses have
been reported on other sources of visualization errors, such as eye-tracking errors.

We will derive the correct algorithm for geometrically correct scene visualization. It will
turn out that the algorithm is very similar to, but not the same as, image formation from a
virtual camera. Further we analyze the error in the 3-D scene visualization caused by eye-
tracking errors and rendering latency.

1.3.3 Overall design of the PANORAMA system
As the PANORAMA system was the first multi-viewpoint system actually built, little can be
found about the design of similar systems. Most designs consider stereo systems [Ariy92,
Dist95, Grin94, Herm71, Kutk94, Past91].

In this thesis, we will describe all parts of the PANORAMA system. In specific, we will pay
much attention to the choice of scene model used for transmission. As this choice influences
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both the analysis and synthesis parts of the system, it has a large impact on the system
complexity. Then we will examine the overall system settings for optimum performance.
We will show that even with all the implementation constraints, a system can still be built
with geometrically correct scene visualization.

In the system description, we will make use of theoretical results derived earlier for the
different system parts. However, the PANORAMA system does not use all algorithms
derived in this thesis, for reasons of implementation feasibility and mainly the fact that the
system design was fixed in 1995 for project continuity.

1.4 Thesis outline
The stereo image analysis part of the thesis consists of Chapter 2 (stereo camera models),
Chapter 3 (stereo camera calibration) and Chapter 4 (correspondence estimation). Chapter 5
deals with the stereo image synthesis part. Chapter 6 deals with the PANORAMA overall
system design. Chapter 7 concludes the thesis with an outlook on the future of 3-D visual
communication systems.

In Chapter 2, models for stereo cameras are investigated. We start by introducing a new
notation, based on tensor notation from physics. This will help us to denote the many-
parameter models clearly. Further, it simplifies the review of many models from literature
and enables to pinpoint their similarities and differences. We describe a general stereo
camera model and examine various reductions to less complex models. One of those is the
parallel camera setup, which is used in the PANORAMA system. The triangulation process
is described, needed to acquire the 3-D scene points after camera calibration and
correspondence estimation have been performed. Finally, simple rules of thumb are derived
to decide on the camera setup for recording a scene with specific dimensions.

In Chapter 3, fixed and self-calibration of stereo cameras will be investigated. A new,
accurate and very robust algorithm is derived for detecting special markers in images. We
will design a fixed calibration algorithm using the Bayesian probability framework,
Simulated Annealing (SA) algorithms and the marker detection algorithm. The self-
calibration algorithm is designed in a similar way using a correspondence field instead of
markers. All algorithms are extensively tested on both synthetic and natural images.

In Chapter 4, we will examine correspondence estimation algorithms. After a brief review of
the classic methods, we will focus on the modern Bayesian methods that estimate pixel-
dense fields with possibly sub-pixel accuracy. The review is based on [Rede99a]. In this
framework, we will present two new estimators, one for calibrated cameras and one for
uncalibrated cameras. The latter provides the input for self-calibration algorithms. It must
be able to cope with any stereo camera setup, e.g. any position and orientation of the two
cameras. Both algorithms use Markov Random Field (MRF) models and Simulated
Annealing (SA) minimization algorithms. The combination of MRF/SA with the often used
hierarchical estimation approach has the potential of providing high quality correspondence
fields, while keeping the computational load reasonable opposed to most current MRF/SA
algorithms. Experiments are performed to validate the quality and computational load of the
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algorithms. The quality of the correspondence fields is examined both in terms of 3-D scene
model quality and robustness for camera setups (large differences between the two cameras
in e.g. orientation).

In Chapter 5, we will derive an image synthesis algorithm for geometrically correct scene
visualization on stereo displays. It will turn out that the algorithm is very similar to but not
the same as image formation in a normal camera. Further we analyze the error in the 3-D
scene visualization caused by eye-tracking errors and system latency. This analysis is based
on [Rede00]. All theoretical results will be validated by extensive subjective experiments,
using real-time computer simulations with synthetic images.

Chapter 6 deals with integration of all components into the PANORAMA 3-D
videoconferencing system. The results are based on [Ohm98, Pano98b, Pano98c, Rede97a,
Rede97b, Rede97c, Rede97d, Rede97f, Rede00]. First we examine several options for
scene models and make a choice that enables a feasible system implementation. We
describe the cameras, eye tracker, stereo display and image analysis/synthesis parts. For a
feasible implementation, several choices and concessions were made. These include
carefully placing the cameras into some prescribed setup (making calibration unnecessary)
and using image interpolation for view generation. We will show that in spite of all these
restrictions, a 3-D visual communication system can still be built that provides
geometrically correct scene visualization. We design one-way and two-way communication
systems and show that the two-way system is more complex than the sum of two one-way
systems. Extensive experiments will be performed, both with computer simulations and the
actual PANORAMA system. It will be shown that the introduction of motion parallax by
adaptive multi-viewpoint systems indeed enhances the feeling of telepresence compared to
normal or stereo television. Finally, we examine the directions for future research in the
area of multi-viewpoint systems.

Chapter 7 concludes the thesis with an outlook on the future of 3-D visual communication
systems.
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Chapter 2 

Stereo camera models

2.1 Introduction
In this chapter we will introduce a geometric model for stereo cameras. The geometric
model relates 2-D image coordinates with light rays in 3-D space. In our application, 3-D
scene acquisition with a stereo camera, corresponding light rays are triangulated to yield
3-D scene points. The triangulation process needs a geometric model for the specific stereo
camera with which the images of the scene are recorded. We will discuss a general,
parameterized stereo camera model, the accompanying triangulation process and the
resulting general properties of the acquired scene, which include position, size, accuracy
and resolution. Figure 2.1 illustrates the scene acquisition process: the parts enclosed by
dotted lines are treated in this chapter.

Scene

bα

Stereo
camera

Images

General stereo
camera model { },....,bα=Θ

Camera
calibration

Correspondence
estimation

$Θ

Specific
camera model

Triangulation

Acquired
Scene

Figure 2.1 The scene acquisition process. This chapter deals with the general stereo camera model,
the triangulation procedure and the properties of the acquired scene (shown dotted).

The general camera model contains all possible stereo camera setups. By camera calibration
(Chapter 3) we estimate the model parameters. The estimated parameters determine which
of all possible setups is the specific model for the actual cameras, which is used by the
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triangulation process. The estimated specific camera model and the estimated
correspondence field (Chapter 4) determine the properties of the acquired scene.

A huge amount of literature is already devoted to the modeling (and calibration) of cameras
[Faug93, Luon93, Pede99, Roth97, Truc98, Tsai87, Wei94]. This has led to several
different models and different notations. Especially the models differ among different
calibration methods. In fixed calibration methods, where a special calibration object is used,
most approaches use complex models, which describe many properties and artifacts of
cameras (mispositioning of the CCD chip, lens distortion). The model parameters are
usually related to directly measurable lengths and angles, giving rise to so-called explicit
models [Roth97,Wei94]. In self-calibration, where the scene itself is used as calibration
object, many approaches use the so-called fundamental matrix as a model [Faug93, Long81,
Truc98]. This matrix captures only a limited part of the stereo camera geometry in a single
3x3 matrix. The entries do not refer directly to measurable physical quantities, and thus the
matrix constitutes an implicit model. Scenes cannot be acquired with exact geometry using
this model (e.g. scale and angles may not be correct). The model is often used because it has
been proven at most 7 parameters can be measured by self-calibration [Arms96, Csur97,
Luon93]. Thus an explicit model with more parameters can be designed, but is useless since
not all of its parameters can be calibrated. However, the 7-parameter proof relies on the
condition of ideal pinhole cameras, that is, without lens distortion. For practical cameras
with lens distortion, there is no such proof. Yet, lens distortion is never modeled in self-
calibration in an attempt to avoid the 7-parameter limit.

The main goal of our camera model review is to unify most current camera models, on the
level of notation, model properties and the ability to be estimated by both fixed and self-
calibration methods. We accomplish this by using a tensor notation, which is used in
physics [Schu85]. We choose to keep the models as explicit or physically possible, since
this makes it easier to understand the camera models and to verify the estimated parameters
[Pede99]. Special attention will be given to lens distortion, which possibly enables self-
calibration with more than 7 parameters. The general model will be used in Chapter 3 on
camera calibration. We will describe several simpler models found in literature, such as
pinhole models (without lens distortion) and the parallel stereo camera that plays a major
role in chapters 4 and 6 of this thesis. Additionally, we will describe the triangulation
process in detail, used in chapters 4 and 6. Finally, we will derive rules of thumb to setup
the stereo camera before making a recording to match the intended scene dimensions,
resolution and accuracy.

The chapter is organized as follows. The tensor notation is motivated in section 2.2. Then in
section 2.3 we will outline our general stereo camera model using this notation, and
compare it with other current models. Section 2.4 deals with the simpler camera models. In
section 2.5 we will examine the triangulation procedure that corresponds with our camera
model. Then in section 2.6 the properties of the acquired scene are determined, as a function
of the selected camera setup and the estimated correspondences. The chapter is concluded
by section 2.7.
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2.2 Geometric notation
In the area of camera modeling, a wealth of different notations is used. The models usually
have a number of parameters in the order of ten to twenty. If a corresponding pixel pair and
its triangulated scene point are considered, about 30 parameters may come into play. Vector
and matrix notations are generally used both to use the alphabet effectively and to group the
parameters into meaningful sets. These notations require a very clear definition. Accidental
mistakes such as using a matrix instead of its inverse (Ax=y instead of Ay=x) are easily
made.

We will use a notation based on tensor notation in physics [Schu85]. Our motivation is:

 • A clear definition of variables is included in the notation itself (accidental mistakes
such as reversal of vectors or inversion of matrices are avoided).

 • All parameters, scene and image points/coordinates share a similar notation.
 • Parameters from other models are easily translated into this notation.

In a large part of camera calibration literature, so-called projective geometry is used, see
e.g. [Arms96, Faug93, Poll98, Roth97, Truc98]. This is a powerful mathematical tool that
enables us to denote transformations such as y=Ax+b (linear) and y=1/x (non-linear) very

compactly in a single, linear 4x4 matrix transformation $ $ $y Ax= . The drawback is that

variables are introduced without physical meaning (each 3-D vector is denoted by a 4-D
vector, which contains only 3 meaningful numbers) and that it cannot include other non-
linearities such as lens distortion. We will not use projective geometry, but our notation can
be extended to this notation by just adding an extra coordinate.

The notation is also used in other chapters of this thesis, and can be found in Appendix A.

2.3 A general stereo camera model
In this section we describe our general stereo camera model. It incorporates all current
models such as the basic pinhole model, lens distortion and mispositioning, misorientation
and skew of the CCD chip. We assume that CCD cameras are used, but the results in this
chapter hold also for other types of cameras.

The parameters in the camera model are categorized in external (or extrinsic) and internal
(intrinsic) parameters [Faug93, Luon93, Pede99, Truc98, Tsai87]. The external parameters
describe the position and orientation of the cameras with respect to their environment, such
as α and b in Figure 2.1. The internal parameters describe the properties of the lenses and
CCD chips within the cameras, such as the size of the pixels, lens aberrations, and the focal
length. The focal length is the distance between lens and CCD, which determines the
camera viewing angle or zoom. Focal length is also defined as a property of the lens
[Brow71], but if the scene is projected sharply on the CCD, the two definitions are the
same.
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Figure 2.2 illustrates our model in our notation. It shows the relation between a scene point
PS and its projections onto the left and right CCDs, the points PPL and PPR. The point PS

emits (or reflects) light, of which two rays are modeled, the light rays lSL and lSR, which
enter the camera through the centers of the lenses. Due to lens distortion effects, the lenses
may refract the rays, which results in the diffracted rays lIL and lIR. The indices S and I stand
for the scene side and the image side of the lens (outside and inside the camera housing).

No less than eight reference frames are introduced: the scene frame SC, the stereo camera
frame SF, the lens frames LF (LFL and LFR), the projection plane frames PF (PFL and
PFR), and finally, the CCD or image reference frames I (IL and IR). All reference frames
have coordinates in meters, except for the image reference frames, which have coordinates
in pixels. Table 2.1 shows the reference frames, their coordinates, units and their position.

Frame Name Coordinates Origin position

SC Scene frame xSC ySC zSC [m] Related to scene

SF Stereo frame xSF ySF zSF [m] Midway of baseline

LFL Left lens frame xLFL yLFL zLFL [m] Left lens optical center

LFR Right lens frame xLFR yLFR zLFR [m] Right lens optical center

PFL Left projection frame xPFL yPFL zPFL [m] Center of left CCD

PFR Right projection frame xPFR yPFR zPFR [m] Center of right CCD

IL Left image coordinates xIL yIL [pixel] Upper left corner left CCD

IR Right image coordinates xIR yIR [pixel] Upper left corner right CCD

Table 2.1  Reference frames in the general stereo camera model.

The position and orientation of the lenses, the external parameters, are completely described
by the relation between the stereo frame SF and lens frames LF. The position and
orientation of the CCD with respect to the lenses, the internal parameters, are modeled using
the relation between the lens frames LF and projection frames PF. This includes the focal
length (lens-CCD distance, or zoom) and errors in chip placement (chip is not centered on,
or not orientated orthogonal to the lens optical axis, as shown quite exaggeratedly in Figure
2.2). The physical size of the CCD chips and the pixels, and properties such as skew are
modeled using the projection frames PF and image frames I.

In section 2.3.1 we will first discuss the most important reference frame, SC, often called
world frame [Truc98, Zhan93], which is used to describe the 3-D scene points acquired by
triangulation. It is the only reference frame that plays a role after the calibration and
triangulation have been performed, and thus, has direct impact on the application. After
that, we will describe the paths of the light rays going in the physical direction from the
scene points towards the CCD chips (opposite to the direction of triangulation in section
2.4). Sections 2.3.2 to 2.3.6 discuss five different steps in the model, each invoking a
transformation from some point to another point or from some reference frame to another.
Where possible we will deal with only one of the cameras and drop the L or R subscript.
Finally section 2.3.7 provides an overview of all parameters in the general stereo camera
model.
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Figure 2.2 The general stereo camera model.

2.3.1 Selection of scene reference frame SC
In principle, the position and orientation of the scene reference frame SC can be selected
arbitrarily. Figure 2.3 shows three ways that are often used to define SC. In fixed calibration
schemes, we always have a calibration reference frame CF, in which the geometric model of
the calibration object is given. It can be used directly as the scene frame, thus SC = CF.

In self-calibration schemes, no CF frame is available. Instead we can use the scene itself to
define a frame. The center of mass may serve as origin for SC, and the principle axes of
rotational inertia may define its orientation [Rede99c]. Since these features must be
extracted from the acquired scene, we must first define some preliminary scene frame

preSC , acquire the 3-D scene, then extract the features, construct SC and finally transform

the acquired scene from frame preSC to SC. The selection of preSC is completely arbitrary.
In this scheme, it is not possible to measure movements between scene and cameras.

The third option is to define the scene frame using the cameras. Figure 2.3 gives an example
using the optical centers of the two lenses. It yields the SF frame that is defined in the center
of the two lenses, where the xSF axis points from the left lens to the right lens. This reference
frame is used in [Rede98d, Rede99b, Rede99d] and also shown in Figure 2.2. Other options
are to use one of lens frames LF, e.g. in [Luon93, Zhan93] LFL is used.
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Figure 2.3 Definition of reference frame SC via a special calibration object, the actual scene or the
cameras.

If processing a sequence of stereo images, we must choose a scene frame iSC for each

stereo image pair i from the sequence. In fixed calibration approaches, all iSC are the same,
since the calibration is performed only once for the entire sequence. Similarly, in self-
calibration of stereo image sequences, we can perform the calibration on the first stereo
image pair and use the parameters for the entire sequence. However, if we want to change
the cameras (e.g. zoom) during the recording, we have to calibrate the cameras separately
for each frame. If we define each iSC using the actual scene scheme, we may have a
problem when the scene deforms over time. The orientation of the SC frame can then
change discontinuously as a function of the deformation, causing inconsistent rotations of
the acquired scene. We can overcome this by introducing temporal consistency constraints
in the iSC frame sequence, at the cost of increased complexity.

We use the SF frame as scene reference frame for the following reasons:

 • Its definition does not require any scene model
 • It does not require any computation (feature extraction from the acquired scene)
 • The frame can be used in both fixed and self-calibration schemes.
 • In image sequences, movement of the entire scene w.r.t. the cameras can be measured
 • It is symmetrical (compared to one of the lens frames)
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2.3.2 From the scene frame to the camera frames
The first step for each scene point PS, given in frame SF, is to obtain its coordinates in the
cameras’ lens frames LFL and LFR. With (A.15) we get for an arbitrary camera with frame
LF:

( )P V P OS S LF
LF

SF

LF SF SFσ
σ
σ σ σ= − (2.1)

This equation has six parameters per camera: three for position OLF
SCσ and three for

orientation ϕ σ
SF
LF ; (inV

SF

LF

σ
σ ) that determine the lens frame LF with respect to the stereo frame

SF. These are the external parameters in the model.

We assume that the lenses are perfectly rotationally symmetric around their optical  (zLF)
axes. Thus, the two angles ϕSF

LFL z; and ϕSF
LFR z; have no meaning. However, we will keep

them as valid angles in the model to describe the z orientation of the cameras. Later, when
the CCD chip is added to the model, we can leave out the z angles for the CCD chip with
respect to the lens. With this, the model loses some physical clarity but gains a clear
distinction in external and internal parameters.

As Figure 2.3 indicates, the position of the SF frame is chosen in the center of the two
lenses (optical centers). The line through the optical centers is called the baseline. The xSF

axis is defined as lying on the baseline, pointing from the left to the right camera. This gives
the following:
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The b is the distance between the optical centers, which confusingly is also called baseline.
The fixation of the xSF axis determines the SF frame up to a free rotation around the xSF axis
or baseline. We can account for this by requiring that:

ϕ ϕSF
LFL x

SF
LFR x; ;+ = 0 (2.3)

The SF frame is now chosen such that it has the average orientation of the two lenses (only
with respect to rotation around the xLF axis).

In total, this gives us 6 parameters for the stereo camera. They constitute all external
parameters. The b determines the position of both cameras on the baseline. The angle

ϕSF
LFL x; determines the rotation around the baseline of both cameras (vertical direction of

camera viewing zones). The two rotation angles ϕSF
LFL y; , ϕSF

LFR y; determine the direction and

convergence of the two viewing zones of the cameras. Finally, the two rotation angles
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ϕSF
LFL z; , ϕSF

LFR z; determine the rotation of the camera around its principal axis (viewing

direction).

The fact that the original twelve parameters have been reduced to six is due to the specific
selection of the stereo frame SF as the scene frame. In other camera models, the external
parameters are usually denoted by a translation vector T and a rotation matrix R for each
camera [Azar95, Eela99b, Luon93, Pede97a, Truc98], e.g.:

SC
LFOT σ= LF

SC
VR σ

σ= (2.4)

In this notation, we must ensure that we are aware which index (or subscript) is up or down.
If they are reversed, the vector and matrix have a different meaning.

2.3.3 From 3-D to 2-D
We use the point PU to model the projective aspect of a camera, that is, its reduction from a
3-D world to a 2-D image. The point PU is defined on the intersection of the incoming light
ray lU and the plane zLF = -1, see Figure 2.4. This plane is parallel to the lens (orthogonal to
the optical axis) and situated one meter behind it at the scene side.

The coordinates of PU as a function of those of PS are given by:

P
P

PU
S

S
z

LF

LF

LF

σ
σ

= − (2.5)

The point PS has three free coordinates, while the point PU has only two (the zLF coordinate
is fixed to -1).

This step involves no additional camera parameters.

OLF

xLF 

yLF 

zLF 

PS

PU

1

-1

PD

CCD

PP lI

lS

rD

rU

Figure 2.4 The points PU and PD in the lens frame are used to model the projective property of the
camera and lens distortion.
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2.3.4 Lens distortion
All practical lenses suffer from distortions. The projection of a scene point on the image can
deviate in the order of 5 pixels from the ideal position [Tsai87], and in rare cases up to 10-
100 pixels [Stei97a]. In the triangulation process, this may lead to significant distortion of
the acquired scene. Lens distortion can be modeled to a great extent [Slam80], which makes
it possible to reduce its effect on the scene acquisition. The additional parameters for the
distortion model are internal camera parameters.

We model lens distortion using the points PU and PD. The point PU is situated on the
intersection of the incoming light ray lS and the plane zLF = -1 on the scene side of the lens,
and the point PD is situated on the intersection of the transmitted light ray lI and the plane
zLF = 1, at the image side of the lens, see Figure 2.4.

Distortionless lens (pinhole camera)
For a distortionless lens, we would find:

P PD U
LF LFσ σ= − (2.6)

Such a model is commonly used [Arms96, Basu95, Csur97, Deve96, Faug92, Faug93,
Faug96, Fitz98, Jeba99, Poll98, Truc98, Zhan93, Ziss95]. The simplicity of (2.6) enables
an analytic approach to camera calibration at the cost of model accuracy. For these models,
projective geometry [Faug93] provides a powerful mathematical analysis tool.
Unfortunately, if lens distortion is included, it cannot be denoted in the compact 4x4
projective matrix notation and therefore obscures the analytical advantages of projective
geometry.

Types of distortion
Lenses show several types of distortion, of which the effects can be described by so-called
radial and tangential lens distortion [Brow71, Eela99a, Heik97, Slam80, Tsai87, Weng92].
Figure 2.5 illustrates these effects in an image of a rectangular and a star-like object. The
effects are zero in the image center and largest at the borders.

no distortion

positive distortion

neg. distortion

(a) (b)

Figure 2.5 Two types of lens distortion, a) radial and b) tangential.
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Radial lens distortion is rotationally symmetric around the optical axis of the lens. In
rotationally symmetric lenses, this is the only distortion we expect. Tangential distortion
arises in practical cameras with multiple lenses, whose optical axes do not coincide exactly
[Weng92]. The difference between front and rear surface curvatures of a single lens may
produce a similar effect [Heik97]. It has been found by several authors that tangential
distortions are negligible and very small compared to the radial distortions [Pede99,
Slam80, Tsai87, Wei94]. We will therefore consider only radial lens distortion.

Radial distortion
On the basis of [Slam80], we model radial distortion as follows:
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The fact that Q is present in only two of the coordinates in (2.7) yields the non-linear
distortion. By definition, Q is given by:
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The lens distortion model can be parameterized by a series of Ki according to:

r r K r K rD U U U= + + +3
3

5
5 ..... Q K r K rU U= + + +1 3

2
5

4 .... (2.9)

In current models, the number of terms is usually one or two. Many different notations are
used for the parameters: (K3,K5) in this thesis and in [Pede97a, Pede99, Rede98d, Rede99b],
(K1,K2) in [Stei97a], (κ1,κ2) in [Eela99a, Tsai87] and (k1,k2) in [Heik97, Truc98, Wei94,
Weng92]. We will adopt the two-parameter model as in (2.9). For the stereo camera. This
gives four parameters in total.

From Figure 2.4 we can see that the values of both radii r are directly related to the angle of
incident and transmitted light rays. For r = 1, the ray-optical axis angle is 45°, which
corresponds to a ray in a camera with a fairly wide viewing angle (zoomed out). For small-
angle cameras (zoomed in), e.g. with a viewing range of -10° to +10°, the radii are in the
order of 0.1. To get an impression of the values for the Ks: if the distortion errors are about
5 pixels for practical lenses [Tsai87] and the CCD has about 1000x1000 pixels, then the K3

and K5 are in the order of 1 for a small-angle camera (r ≈ 0.1), and they are about 0.01 for
wide-angle cameras (r ≈ 1).
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Figure 2.6 shows two curves of a fairly large radial lens distortion. For some K3 and K5, the
curve has an extremum (at ext

Ur in Figure 2.6). This effect does not appear in any useful real

camera.
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Figure 2.6 Radial distortion curves.

Model coordinates
Most camera models with lens distortion apply (2.7) on image coordinates I rather than lens
coordinates LF [Heik97, Weng92]. This yields other values for the Ks, which makes it
difficult to compare the models numerically [Eela99a].

Our choice of lens coordinates has the following motivation. First, since (2.7) does not
require any model of the CCD chip, the parameters are truly lens parameters. In principle,
the K parameters do not depend on the position of the CCD chip, such as focal length
(zoom) and misplacement. For multiple-lens cameras with zoom function, however, the Ks
may however change with zoom. This is not because the Ks are a function of the focal
length, but because both the effective focal length and the Ks are a function of the complex
interaction between the actual lenses. Any change in the Ks still reflects the fact that the
single effective lens really becomes better or worse.

Secondly, if lens distortion is modeled using image coordinates I, an equation such as (2.7)
results in a more complicated form, as in [Weng92]. All effects of the CCD chip such as
pixel size, skew, and CCD mispositioning should then also be taken into account.

Asymmetry in computational efficiency
To compute light rays in both the physical direction and the triangulation direction, we must
calculate (2.9) in two different directions (see Figure 2.2). In terms of computational
efficiency, equation (2.9) is highly asymmetric.

Since (2.9) is an odd function of rU, its inverse is also an odd function of rD:

r r K r K r K r K rU D
inv

D
inv

D
inv

D
inv

D= + + + + +3
3

5
5

7
7

9
9 .... (2.10)
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The terms in (2.10) can be computed analytically by replacing each occurrence of rD with
the right-hand side of (2.9) and requiring identity. Even if only two terms are used in (2.9),
the series in (2.10) must be infinite if it is to represent the same model. This yields:

K K
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(2.11)

The coefficients in (2.11) get larger for the higher invK terms. For practical reasons, the
series must be truncated at some point. Then (2.11) is very accurate for small rD but
becomes less and less accurate for larger rD. A different approach would be to invert (2.9)
via interpolation between a number of calculated control points. In [Heik97] a similar
method is applied on 2-D image coordinates instead of the 1-D parameter r. These
approaches may lead to a higher and more uniformly distributed accuracy with a lower
number of terms.

A simpler alternative is to use a numerical method to obtain rU from rD. We used the
Newton and bisection methods [Pres92]. The Newton method results in:

r r
r K r K r r

K r K rU i U i
U i U i U i D

U i U i
; ;

; ; ;

; ;
+ = −

+ + −
+ +1

3
3

5
5

3
2

5
41 3 5

(2.12)

We start the procedure with rU;0 = rD and proceed until sufficient accuracy has been
reached. The bisection method is an iterative procedure that only computes (2.7)-(2.9). It
requires an initial interval that must contain the rU to be computed. We used [0, 2rD] if the

distortion curve has no extremum and [0, ext
Ur ] if it has one (the extremum can be computed

analytically). The final accuracy after N iterations is guaranteed to be within 2-N times the
length of the starting interval.

Figure 2.7 shows the computed rU from rD as a function of original values of rU, for two
different values of the K3, K5 pair. The rD is calculated with (2.9), and rU is calculated with
the Newton and bisection methods, and with (2.10)-(2.11) using 2, 3 and 19 terms. The
analytical method is reasonably accurate for small r but diverges for large r regardless of the
number of terms used. For low-distortion cameras (small K), the Newton method reaches an
absolute accuracy better than 10-12 in about 4 iterations. For wide-angle, high-distortion
cameras (large r and large K) 10 iterations are sufficient to reach the same accuracy, but the
method does not always converge if the distortion function has an extremum.

We will adopt the bisection method that is simple, applicable for all r and K, reasonably
efficient and guaranteed to reach any arbitrary accuracy.
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Figure 2.7  Inexact computation of rU from rD with analytical and numerical methods.

Asymmetry in modeling
In terms of modeling, (2.9) is also asymmetric. Since a lens is still a lens when turned
around (scene side becomes image side and vice versa), we conclude that changing the roles
of rU and rD in (2.9) yields a different model for lens distortion which has the same
modeling quality:

r r K r K rU D D D= + +3
3

5
5* * (2.13)

The K*s are new modeling parameters and not equal to K or invK in the previous
paragraphs.

This offers us two different distortion models, (2.9) and (2.13), with equal modeling
qualities, but very different computational properties. Whenever an algorithm reconstructs
light rays more often in the physical direction from scene towards the images, lens distortion
model (2.9) is more attractive. This model is adopted in [Heik97, Rede99b]. If rays are
more often reconstructed in the triangulation direction, (2.13) is more efficient. This model
is used in [Eela99, Pede99, Stei97, Truc98, Tsai87, Wei94, Weng92].

In our fixed calibration scheme, only rays in the physical direction are used. In our self-
calibration scheme, both directions are used in the same proportions. Thus, we adopt model
(2.9).

2.3.5 Image formation
The next step is to form an image on the plane in which the CCD chip resides. To this end,
we introduce the PF frame for each camera. It is defined using only the CCD chip. The
relations between the LF and PF frames will introduce 12 new parameters (6 for each
camera). Two will have no meaning, the other ten are directly related to parameters from
other models. They model the focal lengths of the cameras and mispositioning and
misorientation of the CCD chips.
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We assume a perfectly flat CCD, and define that the zPF = 0 plane of the projection frame
PF contains this chip. The optical axis of the lens zLF intersects the zPF = 0 plane at the so-
called principal point Pprincipal [Arms96, Truc98]. If the CCD chip is positioned correctly,
this point lies in the center of the chip. We define OPF to be exactly in the center of the chip
and model chip mispositioning via the relation between LF and PF frames. This relieves us
from introducing the point Pprincipal in the model. The final requirement that the xPF axis is
parallel to the xI axis of the CCD chip completely determines the PF frame.

In this step we calculate the coordinates of point PP in the projection reference frame PF,
see Figure 2.8. The PF coordinates are continuous and in meters (we deal with pixel
coordinates I in the next section).

OLF

xLF 

yLF 

zLF 

PUPDPP

OPFzPF 
xPF 

yPF 

CCD plane z
PF = 0

zLF = 1

lI

lS

Pprincipal

Figure 2.8 Image formation on the projection plane (plane of the CCD chip).

The PP point lies on light ray lI, which is most easily described in the lens frame LF:

P PP D
LF LFσ σλ= λ > 0 (2.14)

The point PP also lies on the projection plane or CCD chip, and thus:

PP
zPF = 0 (2.15)

This leads to:
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The PF coordinates of PD (needed in the previous equation) and PP (the outcome of this
paragraph) are:

( )P V P OD D PF
PF

LF

PF LF LFσ
σ
σ σ σ= − ( )P V P OP D PF

PF

LF

PF LF LFσ
σ
σ σ σλ= − (2.17)

Equation (2.17) introduces six parameters per camera, which determine the projection
frames PFL and PFR with respect to the lens frames LFL and LFR, respectively. Since the
projection is defined such that the CCD chip resides in the zPF = 0 plane and is centered in
the xPF and yPF coordinates, the three parameters OPF

LFσ determine the position of the CCD

chip center, measured in LF coordinates. The OPF
zLF  equals the focal length of the camera,

that is, the distance between the lens and the CCD chip. It is usually denoted by f [Faug96,
Heik97, Heba99, Pede97a, Pede99, Truc98, Tsai87, Weng92]:

f OPF
zPF= (2.18)

In the f notation we must clearly define what f means, in case of chip mispositioning. Then
we can define f as the distance from OLF to Pprincipal, but also as the distance from OPF

towards the zLF = 0 plane along the zPF axis. Further, the focal length has also been  denoted
by α [Arms96, Faug92, Zhan93]. Sometimes it is split into two different focal lengths along
the vertical and horizontal directions to include the pixel aspect ratio [Arms96, Basu95,
Luon93, Poll98].

The other two parameters, OPF
xLF  and OPF

yLF , determine the position of the principal point

Pprincipal on the CCD chip. They are both zero if the intersection is in the center of the CCD
chip. In [Tsai87] practical values for chip mispositioning are found in the order of 10 pixels.
Figure 2.8 shows an exaggerated example of CCD mispositioning.

In literature, chip mispositioning is always denoted by the I coordinates of the principal
point:

II yx
principalP

v

u ,=







(2.19)

Sometimes these coordinates are relative to the CCD chip center (and thus zero in case of
zero mispositioning). The coordinates of the principal point have the largest variety of
notations encountered in camera calibration: (u,v) in [Poll98], (u0,v0) in [Arms96, Faug92,
Heik97], (r0,c0) in [Weng92], (δx,δy) in [Basu95], (cx,cy) in [Pede97a, Tsai87], (xclo,yclo) in
[Papa95], (x0,y0) in [Pede99], (cxr,cyr) in [Stei97a] and (ox,oy) in [Truc98]. These notations
all need the introduction of the point Pprincipal and need all other aspects of pixel
discretization (skew, pixel aspect ratio) in order to denote chip mispositioning. Expressing
chip mispositioning in the unit of meters in our notation seems counterintuitive, but in
section 2.4 we will see that this will be circumvented in a natural way.
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For the orientation of the projection frame (or CCD chip), we have three parameters per

camera ϕ σ
LF
PF ; in V

LF

PF

σ
σ . The ϕLF

PF z; models the rotation of the entire camera housing around

the zLF axis. We already modeled this in section 2.3.2 for the sake of a clear distinction
between internal and external parameters, and thus:

ϕLFL
PFL z; = 0 ϕLFR

PFR z; = 0 (2.20)

The other two parameters, ϕLF
PF x; and ϕLF

PF y; , (two for each camera) model non-orthogonal

orientation of the CCD chip with respect to the principal axis of the lens. They are both zero
if the CCD chip is oriented exactly orthogonal. They are seldomly modeled in other
approaches.

This gives us a total of ten internal parameters for the stereo model. Two model intentional
aspects (two focal lengths along the zF axes) and eight model imperfections
(mispositioning/misorientation in the xF/yF directions for the left/right CCD chips).

2.3.6 Pixel arrangement on the CCD
The last step is to take into account the pixel arrangement on the CCD, for which purpose
we need the pixel size, the pixel aspect ratio and the skew of the CCD chip. Figure 2.9
shows the details of the relation between the PF and I frames. The image (pixel) coordinates
are real numbers, to allow for sub-pixel measurements. The OI origin is located at the top-
left corner of the top-left pixel (right side of Figure 2.9). Therefore, the xI and yI coordinates
are integers plus one half at the pixel centers.
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yI

xI
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1 m  
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Ny

Figure 2.9 Pixel arrangement by the CCD chip. It incorporates skew, scale and translation between
projection plane coordinates PF (meters) and image coordinates I (pixels).

First we calculate the pixel coordinates of PP, given by the I reference frame:
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Since the CCD chip is centered in the PF frame, we have:
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where Nx and Ny are the horizontal and vertical size of the CCD chip in pixels. These
numbers are always known in advance, e.g. Nx = 720 and Ny = 576 for cameras that yield
CCIR601 images.

The base matrix models the size of the pixels and their possibly skewed orientation:
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Here sx and sy are the horizontal and vertical pixel sizes and θ is the angle with which the yI

axis is skewed (and thus the xI coordinate, see section 2.2.7). Inversion of (2.23) yields:
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which can be used in (2.21). For the stereo camera, this gives a total of six internal
parameters: three in (2.23) for each camera.

If models include skew at all, they usually use the θ angle parameter [Arms96, Faug92,
Jeba99, Luon93, Zhan93]. Now and then a fractional pixel length unit is used, e.g.
s = sy

-1 tanθ in [Poll98]. The pixel sizes are usually not denoted freely, but combined with
the focal length (section 2.3.5) into two compound parameters. This will be treated in
section 2.4.1.

2.3.7 Overview of parameters
If all parameters in the sections 2.3.2 to 2.3.6 are taken together, we have a total of
Ncam-model = 26 parameters, listed in Table 2.2. We call these parameters the physical
parameters, where lengths are in meters and angles in radians. The top rows contain the six
external parameters; the bottom rows contain the 20 internal parameters.
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Function Parameters #

Position (x) and orientation (x) of both cameras

Orientation (yz)

b ϕSF
LFL x;

ϕSF
LFL yz; ϕSF

LFR yz;

2

4

focal lengths

CCD misorientation

CCD mispositioning

Lens distortion

Pixel size (xy), CCD skew

OPFL
zLFL  OPFR

zLFR

 ϕLFL
PFL xy; ϕLFR

PFR xy;

OPFL
xyLFL  OPFR

xyLFR

K3;L K5;L K3;R K5;R

sx;L sy;L θL sx;R sy;R θR

2

4

4

4

6

Table 2.2 All physical parameters in the stereo camera model. The top rows contain six external
parameters, while the bottom rows contain 20 internal parameters. The total number of camera
parameters is Ncam-model = 26.

2.4 Less complex models
We will reduce the general stereo camera model in several steps, each time discarding a few
parameters because they are useless (horizontal pixel size), can be neglected (CCD
misorientation and skew), model undesired effects (lens distortion and CCD
mispositioning), or cannot be measured (baseline in case of self-calibration). Finally we
discuss two special models, the orthographic and parallel camera models. The orthographic
model is included just for completeness, but will not be used further. The  parallel model
will be used in Chapter 4 and in the PANORAMA system in Chapter 6.

2.4.1 Horizontal pixel size
The horizontal pixel size sx is present in Table 2.2 to make all parameters physical
parameters, that is, measurable by hand and easy to understand. However, as is shown in
Figure 2.10, if everything on the image side of the lens is scaled arbitrarily (separately for
each camera), the stereo image pair remains unchanged.

Thus, the images are invariant for this scaling and we may select one parameter at will. We
choose to set the horizontal pixel size to 1 for both cameras:

s sx L x R; ;= = 1 (2.25)

This influences all other length parameters that have meaning on the image side of the lens;
the internal parameters. Effectively, horizontal pixel units (hpu) replace the meter as unit of
length. A focal length will then typically have values in the order of 500-5000 hpu. The
vertical pixel size will reduce to the pixel aspect ratio sy/sx. For the CCD mispositioning
parameters, the new unit seems a more intuitive choice than meters.
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Figure 2.10 Scaling of everything at the image side of the lens has no effect.

Some models from literature use a different reduction and use f/sx and f/sy [Arms96, Basu95,
Luon93, Poll98], which results in different effective focal lengths in the vertical and
horizontal directions. This notation is equivalent to expressing the same focal length with
two new and different unit; a concept that is more difficult to grasp than the one we use.
Further it is not clear which unit should be used for other internal parameters.

Since triangulation does not require the relation between hpus and meters, we may think of
hpus as being equal to meters if this helps us to visualize some parameter values mentally.
This results in focal lengths and CCD chip sizes in the order of 1000 meter.

For our application of 3-D scene acquisition we do not need the hpu in meters and use
(2.25). This reduces the stereo camera model by two parameters. Table 2.3 shows the new
model with 24 useful parameters. The hpu does not need to be the same for the left and right
camera (different horizontal pixel length), but this has no consequences.

Function Parameters #

Position (x) and orientation (x), both cameras

Orientation (yz)

b [m]    ϕSF
LFL x;

ϕSF
LFL yz; ϕSF

LFR yz;

2

4

focal lengths

CCD misorientation

CCD mispositioning

Lens distortion

Pixel aspect ratio, CCD skew

 OPFL
zLFL  OPFR

zLFR  [hpu]

ϕLFL
PFL xy; ϕLFR

PFR xy;

OPFL
xyLFL  OPFR

xyLFR  [hpu]

K3;L K5;L ,  K3;R K5;R

sy;L        sy;R [hpu]  ,     θL θR

2

4

4

4

4

Table 2.3 Useful parameters in the stereo model (Ncam-model = 24). All internal lengths are now in hpu,
while the baseline, the only external length parameter, is still in m.
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2.4.2 Vertical pixel size or aspect ratio
Often the vertical pixel size sy is either not modeled, or equivalently, modeled as 1 (hpu)
[Arms96, Azar95, Boug98, Pede97a, Poll98]. This means that the pixel aspect ratio is 1 and
the pixels are square. This reduces the stereo model by two parameters:

1; =Lys 1; =Rys (2.26)

Many CCD cameras do not have square pixels, but rectangular pixels with aspect ratios of
about 0.9 to 1.1. The square pixel reduction is mostly applied in camera models for self-
calibration methods to get the number of parameters in the model below the critical value of
the 7 that can be estimated with lens-distortion free methods. We will keep the pixel aspect
ratio as parameter in our model.

2.4.3 Skew
For modern CCD chips, the skew angle θ is often very small, in the order of 10-6 rad
[Zhan93], and can thus safely be neglected. This reduces the stereo model by two
parameters:

θL = 0 θR = 0 (2.27)

2.4.4 Misorientation of the CCD chip
Figure 2.11 shows that CCD misorientation has an effect similar to image warping. The ray
lI hits the misoriented CCD at the edge, but it should have hit a well-oriented CCD q pixels
closer to the center. These effects are similar to a combination of radial and tangential lens
distortion.

OLFOPF

no misorientation misoriented

q

∆ϕ

lI

CCD

γ

Figure 2.11 CCD misorientation ∆ϕ described by pixel distortion q. The CCD is viewed in the direction
of the misorientation axis.
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The pixel errors are largest at the edges of the CCD and zero in the center. We find for the
maximum errors:

q ≈
γ

ϕ
2

4
∆ (2.28)

For a misorientation angle ∆ϕ of 1° and a camera with a wide viewing angle of γ = 90°, we
find q ≈ 0.01, about one percent of a pixel. This number is even lower for points closer to
the CCD center, and drops quadratically with viewing angle. Therefore, we can safely
discard CCD misorientation from the camera model:

ϕ σ
LFL
PFL; = 0 ϕ σ

LFR
PFR; = 0 (2.29)

2.4.5 Mispositioning of the CCD
The mispositioning of the CCD chip is similar to a rotation of the entire camera, a CCD
misorientation and a small change in focal length, shown in Figure 2.12.

OLF

OPF

f

mispositioning u

misorientation ∆ϕ

Pprincipal

f’

CCD

rotation

Figure 2.12 CCD mispositioning described by a camera rotation and CCD misorientation.

Table 2.4 shows the two equivalent situations. The amount of mispositioning u is the
distance between CCD center and principal point in pixels.

Mispositioning Misorientation

CCD mispositioning u 0

CCD misorientation 0 ∆ϕ
focal length f F’

additional rotation 0 ∆ϕ

Table 2.4 The same situation described by CCD mispositioning versus CCD misorientation.

For the ∆ϕ and f’ we find:
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f

u=∆ϕ ( )2
2

11’ ϕ∆+≈ ff (2.30)

For u = 25 (very large mispositioning) and f = 500 [hpu] (small for chip with width
N ≈ 1000 pixels) we obtain ∆ϕ = 0.04 rad ≈ 2°. Via (2.28) we then find (with a large
viewing angle γ = 90°) that the remaining distortion in the image is in the order of q ≈ 0.02.
Similar to misorientation, we can thus neglect mispositioning:

OPFL
xyLFL = 0 OPFR

xyLFR = 0 (2.31)

In [Boug98] a similar result is derived. In [Tsai87] and [Zhan93] it is found experimentally
that CCD mispositioning has no measurable effect on the scene acquisition.

It thus seems that CCD mispositioning can be safely discarded from the camera model. In
all approaches where no lens distortion is modeled, this is the case. If lens distortion is
modeled, however, the center of the radial distortion should be at the principle point and not
in OPF where it is when mispositioning is discarded. Therefore we may need to model CCD
mispositioning to ensure that the model of the lens distortion is correct [Wei94].

2.4.6 Ideal pinhole lenses
If we set K3 and K5 to zero for both cameras, we model the lenses to be ideal. The camera
model then becomes a so-called pinhole model, which is widely used in calibration
[Arms96, Basu95, Csur97, Deve96, Faug92, Faug93, Faug96, Fitz98, Jeba99, Poll98,
Truc98, Zhan93, Ziss95]. The name is derived from a sheet of paper with a small (pin)hole
in it, which can be used as an ideal lens. The amount of light that is transported by the
pinhole is much smaller than by any practical lens, which renders the pinhole often useless
in practice. But theoretically, as long as the hole is larger than the wavelength of light, the
pinhole has no lens distortion.

As the lens distortion may warp pixel coordinates by about 5 pixels for typical cameras
[Tsai87], or even more [Stei97a], these errors cannot be neglected. However, a reason for
not modeling them is that the non-linear lens distortion formula obscures analytical
treatments of camera calibration. This results in:

K L3 0; = K L5 0; = K R3 0; = K R5 0; = (2.32)

Next to losing the distortion parameters, the camera model undergoes an additional change
due to the ideal lenses. Since now each lens has the geometry of a point (the hole in the
paper), it has no orientation whatsoever. Thus, the lenses also have no specific optical axis
anymore. Any line through the optical center may be thought of as an optical axis. Two of
these axes have a special role for the CCD chip: one results in zero CCD mispositioning and
the other one in zero misorientation, see Figure 2.13. In case of ideal CCD chip placement,
both axes are the same.
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OLF

pinhole lensCCD

xPF

OPF

a

b

Pprincipal

yPF

zPF

Figure 2.13 A pinhole lens has no specific optical axis. In combination with the CCD chip, two special
axes exist, which result in a) zero mispositioning and b) zero misorientation of the chip with respect to
the chosen axis.

As we have seen in section 2.4.4, CCD misorientation could be safely discarded from the
camera model. We thus select axis a as principal axis, which gives zero mispositioning:

OPFL
xyLFL = 0 OPFR

xyLFR = 0 (2.33)

and then safely neglect the misorientation:

ϕ σ
LFL
PFL; = 0 ϕ σ

LFR
PFR; = 0 (2.34)

2.4.7 Baseline
In self-calibration approaches, the scene itself is used as calibration object. In general, this
scene can be anything and we have no clue about its geometry beforehand. Therefore we
have no information about specific lengths in meters of any object. As a consequence, it is
not possible to measure any parameter in meters. The only parameter left in the model that
needs this unit, is the baseline. In self-calibration approaches we use:

b = 1 (2.35)

Effectively, the baseline is measured in baseline units (bu). As a result, the  acquired scene
will also have coordinates in baseline units. With that, we lose the absolute scale of the
captured scene. The reduction has no additional effects on the camera model.

2.4.8 Orthographic model
A special kind of camera model is the orthographic model. Whenever the depth size ∆Z of
the scene is small compared to the distance Z to the camera, in the order of 5% or lower
[Truc98], perspective effects are very small. An example of such a situation is when an
object is viewed from a large distance with very small-angle cameras (large zoom or focal
length). In this situation, the camera model undergoes severe changes and becomes
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orthographic [Truc98]; also referred to as a weak-perspective camera [Arms96]. Several
parameters from our model then merge into compound parameters or can no longer be
defined as before. We will not use this model.

2.4.9 Parallel camera model
The parallel camera model is a very simple model with very few parameters. Figure 2.14
shows the model. Usually for this setup, the CCD chips are drawn at the front of the pinhole
instead of behind it. The model assumes an ideal pinhole lens and ideal CCD placement
within both cameras, and identical focal lengths, pixel size and orientations among the two
cameras. The name of the setup is due to the fact that the CCDs are aligned in parallel (and
similarly, the optical axes perpendicular to the CCDs).

The remaining parameters are the baseline b, focal length f and pixel size sx, sy. In
combination with the horizontal pixel size, pixel aspect ratio and baseline reductions in
sections 2.4.1, 2.4.2 and 2.4.6 respectively, only the focal length parameter remains.

OSF

OLFL

baseline

PS

OLFR

f

b

xIR

yIR

yPFR

xPFR

OPFR

xIL

yIL

yPFL

xPFL

OPFL PPL

PPR

OIL

OIR pixel size
sx , sy

Figure 2.14 The parallel camera setup.

The parallel model is not very attractive for modeling of actual cameras, unless a stereo
camera is used with very high quality lenses and sufficient mechanical stability to be aligned
manually into the parallel setup. The popularity for the parallel camera model is due to the
following. Whenever a stereo camera is calibrated, its images can be warped in such a way
that they appear as if recorded by a virtual parallel stereo camera. This warping procedure is
called image rectification [Papa95, Roy97].

The parallel setup is attractive because many image-processing tasks are simpler with
images from such cameras. For the modeling of light rays in the direction from a scene point
PS towards the left and right images, it follows after some calculation that:
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which is much simpler than the entire scheme of section 2.3. The projections have the
properties:
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y
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x
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PP

PP

=
≥

(2.37)

The fact that the y coordinates are the same in the left and right image lowers the
complexity of correspondence estimation algorithms significantly. All corresponding pixels
lie on the same scan line, requiring only a one-dimensional search algorithm. This will be
used in chapters 4 and 6.

The triangulation procedure is similarly simple, see section 2.5.5.

2.5 Triangulation
Our application, the acquisition of 3-D scenes, needs triangulation of two light rays that
originate from corresponding pixels in the left and right camera images (see Figure 1.12).
This requires the construction of two light rays from the CCD chips, through the lenses into
3-D space. In section 2.3, we constructed light rays from 3-D space towards the CCD chips.
Here we will execute the same steps in reverse order.

Assume that PPL and PPR form a corresponding pixel pair, of which the coordinates are
known in the IL and IR image frames respectively (via correspondence estimation). Our
goal is to obtain the SF coordinates of PS, which now plays the role of acquired scene point.

This section uses the general model with all the parameters that were introduced in section
2.3. The upper and lower subscripts are interchanged whenever it promotes readability and
understandability. The treatment does not involve any new parameters.

2.5.1 From the pixel grid back to the projection plane
In section 2.3.6 we calculated the I coordinates of a point PP given its PF coordinates by
(2.21). Its inversion gives (see Appendix A):

PFIPF

I

PF
IPP OPVP σσσ

σ
σ += (2.38)

2.5.2 From the projection plane towards the lens
In section 2.3.5 we determined the position of point PP in the PF frame on the basis of point
PD in the LF frame. The reverse is somewhat simpler. First we calculate:

P V P OP P PF
LF

PF

LF PF LFσ
σ
σ σ σ= + (2.39)
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and then:
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2.5.3 Lens distortion
To invert lens distortion, we first calculate rD with (2.8), use the bisection method to obtain
rU and find Q with (2.8). For PU it then follows from (2.7) that:
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2.5.4 Triangulation from stereo 2-D to 3-D
First we calculate the SF coordinates of the point PU :

P V P OU U LF
SF

LF

SF LF SFσ
σ
σ σ σ= + (2.42)

After performing all previous steps for both the left and the right camera, we have two
points PUL and PUR and their coordinates in the SF frame. Figure 2.15 shows that we are
now ready to perform the triangulation using the positions of the left and right optical
centers (lens frames).
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lSL

PS

Vl

Vb

Vr

Figure 2.15 Acquisition of a scene point PS by triangulation of PUL and PUR.

If we denote:
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then we observe that
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with λL and λR such that
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and |V| denotes Euclidean distance or length in the SF frame (see section 2.2.5). This yields:
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where the dot products and lengths are defined by the SF frame (see Appendix A). Then,
with (2.44) we obtain the SF coordinates of PSL and PSR. Ideally, these points are the same.
If the camera parameters or the original corresponding pixel pair contain errors, the points
are not exactly the same. Therefore, we construct PS by taking the average of the points PSL

and PSR:

( )P P PS SL SR
SF SF SFσ σ σ= +

1

2
(2.47)

We call the vector VP PSL SR

SF

 to 
σ between the two points the intersection error:

V P PP P SR SLSL SR

SF SF SF

 to 
σ σ σ= − (2.48)

This is a measure of the correctness of the correspondences and the camera model
parameters.

2.5.5 Triangulation with the parallel camera setup
In case the parallel camera setup is applicable, the triangulation procedure is much simpler.
The intersection error is always zero in this case. From (2.36) we can directly determine the
inverse operation:
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According to (2.37), the two yI coordinates are the same, which gives some freedom in the
selection of the middle equation in (2.49).

2.6 Properties of the acquired scene
In this section we will determine the position, size, accuracy and resolution of the acquired
scene. They are determined by the camera model described in section 2.3 (and 2.5), and the
accuracies of the estimated camera parameters (see Chapter 3) and the estimated stereo
image correspondences (see Chapter 4). Because a large number of parameters are involved
in combination with non-linearities due to perspective projections and lens distortions, such
an analysis is very complex and hard to find in literature. In [Tsai87] a bound is derived for
the accuracy of the acquired scene, but it is quite complex and does not provide a quick
insight.

Our analysis provides a reasonably simple indication of the scene properties using our
physical camera models. The position and size of the scene depend directly on the camera
parameters. The resolution of the scene depends on the number of (more or less
independent) corresponding pixel pairs in the stereo image. We assume that the number of
correspondences is equal to the number of pixels in one image, i.e. we have a pixel-dense
correspondence field (see Chapter 4). The accuracy is determined by the noise present in
the estimated parameters and correspondences. The noise in the correspondences is found
experimentally in Chapter 3 when detecting special markers in images (only for fixed
calibration) and determined by the correspondence algorithms in Chapter 4. The amount of
noise in the parameters is found experimentally in Chapter 3 on camera calibration.

In section 2.6.1 we first describe a simple camera model that we use to keep the analysis
comprehensible. Then in section 2.6.2 we determine the position P, size d and resolution ∆d
of the scene. That will help us in sections 2.6.3 and 2.6.4 to deal with the 3-D acquisition
accuracy ∆a due to errors in the correspondences and the parameters respectively. In section
2.6.4 we will consider the additional aspects when using the more complex general camera
model.

2.6.1 Simple stereo camera model
In order to avoid a very complex analysis, we will use a simple stereo camera model, shown
in Figure 2.16. For the internal parameters, we assume that the lenses have no distortion,
that the CCD chips have no skew and have a size of N x N pixels and are positioned without
any error, that the focal lengths are both equal to f, and that the pixel aspect ratios are 1.
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From the external parameters we consider only the baseline b and convergence angle α. The
baseline b and camera-scene distance z are given in meters, while f is given in hpu.

b

N

f

z

α

γ

scene
z

b

dx

dz dy

β

xSF

zSF

ySF

dz

dx

dy

q q

scene

(a) (b)

Figure 2.16 A simple camera model for the analysis of the scene properties (top view or xSF , zSF

plane), a) convergent setup, b) parallel setup.

Figure 2.16a shows the case of large convergence (α ≈ 90°) and Figure 2.16b shows the
case of zero convergence (α = 0°). The latter equals the parallel camera setup from section
2.4.9. Clearly, only a limited part of the viewing angles of the parallel cameras overlap to
provide stereo viewing of the scene. This is the price we have to pay for the advantages of
this setup. In Chapter 6 we will see that there are methods to circumvent this drawback.

For the parallel setup, the angle between triangulated light rays is equal to β, which differs
for each scene point. For the convergent setup, the angle is approximated by α for all scene
points. The viewing angle of the cameras is γ :

tan 1
2 2
γ =

N

f
(2.50)

For small γ, we find:

γ ≈
N

f
(2.51)

2.6.2 Position, size and resolution of the scene
We will examine the position Pcenter, size dx, dy, dz and resolution ∆dx, ∆dy, ∆dz of the scene
for the convergent and parallel camera setups separately.
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Convergent cameras
Figure 2.16a shows that the scene is approximately located around the intersection of the
optical axes. For this we find:
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(2.52)

The shape of the scene is similar to a kite. To simplify the description of its size, we define
a bounding box around the scene as illustrated in Figure 2.17. For the size of this box we
find after some calculations:
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As can be seen in Figure 2.17, the volume of the bounding box is twice the volume of the
scene, due to the fact that the scene is not a square aligned with the xSF , zSF axes. Therefore,
we approximate the scene shape by a box with size:
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(2.54)
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Figure 2.17 Scene size and bounding box for convergent camera setup.
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For small γ , (2.53) and (2.54) become:
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Since the CCD chip has a viewing angle γ, each pixel has a viewing angle of more or less
γ / N. If a corresponding pixel pair is triangulated, the intersection yields a cube that has a
similar orientation as the entire scene but whose edge length is N times smaller. This is the
resolution of the scene:

∆d
N

d=
1

(2.56)

This gives a total number of N3 elementary 3-D scene volumes, generally called voxels.
This seems much more than the 2N2 (left and right) pixel luminances we started with to
acquire the 3-D scene. We have to keep in mind, however, that only scene surfaces can be
captured by stereo cameras. If 2N2 pixels yield N2 corresponding pairs, only N2 out of the N3

voxels get assigned some scene point (or slightly more due to interpolation), while the other
voxels contain empty space (foreground) or remain undefined (behind scene surface).

For α ≈ 90°, we find that the scene has about the same size in all directions. It is a cube,
oriented at 45° with the x and z axes. Its shape is approximated by a similar cube aligned
with the x and z axes. Its size is:

d b= 1
2 2 γ (2.57)

And by using (2.51) and (2.56) we obtain:

∆d
b

N

b

f
= ≈1

2
1
22 2

γ
(2.58)

Concerning the last term of (2.58), we point out that if more pixels are added on the same
CCD chip area, then N increases, so the hpu unit will become smaller and f will increase,
producing the expected decrease in ∆d.

Parallel cameras
In the parallel case, we see in Figure 2.16b that the position and size of the scene are not
fully restricted. We assume that the scene is a box, centered at:
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The depth position z and the depth size dz are free parameters. The scene size dx and dy are
restricted by a function of  z:
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For z = bf/N, the dx becomes zero. At this depth, the viewing angles of the two cameras do
not overlap at all. The relative overlap 0 ≤ η ≤ 1 is a function of depth:

η
γ

= − = −1 1
bf

zN

b

z
(2.61)

The choice of z, b, γ and their effect on overlap and thus the scene size plays an important
role in the design of the PANORAMA multi-viewpoint system, see Chapter 6.

Similar to the converging camera setup, the resolution is determined by the fact that pixels
have a ‘viewing angle’ γ /N, which is 1/N of the total viewing angle. Then, when we apply
(2.56) to (2.60), this results in:

∆d
z

fx y, = (2.62)

The overlap η has no influence on the size of the voxels. The ∆dz is obtained as follows, by
using β, the convergence angle between light rays intersecting at depth z on the zSF axis (see
Figure 2.16b). The light rays originate from two points on the left and right CCD at a pixel
distance q from the CCD center, see Figure 2.16b. For β we find:
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From the two right-hand sides we find:
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For ∆q = 1/2, we have a shift of half a pixel in both images, which is seen as one unit of
resolution (similar to a shift of one pixel in only one image). This yields:

∆d
z

bfz =
2

(2.65)

And together with (2.62) we find:

∆
∆
∆

d

d

d

z

f
z b

x

y

z

















=
















1

1

/

(2.66)

Thus, in the parallel setup the resolution drops down linearly with z in the x and y
directions, and quadratic in the z direction. For z ≈ b the resolution is isotropic. Due to the
overlap constraint η > 0, the scene can only be present at this position if a wide-angle
(> 60°) camera is used with a focal length f < N.

2.6.3 Scene accuracy due to noise in correspondences
Here we will derive an indication of the accuracy ∆a of the acquired scene given noise or
errors in the estimated correspondences. The results will be related to the resolution ∆d
found in the previous section. First we will discuss the accuracy of the correspondences
followed by the accuracy of the acquired scene.

Accuracy of correspondences
We assume that for each pixel in one of the images, a corresponding pixel in the other
image can be found with an error in the order of 0.1 to 10 pixels. We assume that the
correspondences are either uncorrelated with neighboring correspondences (neighboring
pixels in the images) or correlated only in a small neighborhood. In such cases, the scene
has its correct global shape but there is some local geometric noise in it.

Figure 2.18 illustrates the errors in the correspondences. In principle, the error can be
modeled to reside fully in one of the pixels in the pair while the position of the other is by
definition correct. To keep our analysis simple we will distribute the error symmetrically
over both pixels, with zero mean and magnitude σcor. For both pixels we use the continuous
I coordinates from section 2.3 to allow for sub-pixel accuracy correspondences.

The error can be isotropic in the xI and yI image coordinates, as is expected for general
correspondence algorithms that have no preference for a specific direction. The error can
also be constrained to one specific direction, in the case that correspondence estimation is
performed after camera calibration. In that case, from the camera parameters we can derive
the so-called epipolar geometry that determines these directions, see Appendix B.
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left image right image

without epipolar
geometry

correspondence error

correspondences
with epipolar
geometry

Figure 2.18 A corresponding pixel pair with estimation errors or noise.

Scene accuracy without epipolar geometry
If no epipolar geometry is used, the correspondence errors are isotropic. We may think of
these errors as effectively scaling the viewing angles γ/N of the light rays originating from
the corresponding pixel pair by σcor in both xI and yI directions. For the accuracy of the
acquired scene we may then write:

∆ ∆a dcor= σ (2.67)

With epipolar geometry
As shown in Appendix B, in the parallel setup the scan lines are equal to the epipolar lines.
That means that corresponding points share their yI image coordinate, as was derived
mathematically in section 2.4.9. Incorporating this constraint in the correspondence
estimation algorithm yields y

corσ = 0. To provide a simple rule of thumb, we will only

investigate the accuracy around the scene center, located on the zSF axis. For this point, the
epipolar plane coincides with the xz plane and we find:
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In the convergent case, the center scan line is also an epipolar line in both images (see
Appendix B) and (2.68) also applies.

2.6.4 Scene accuracy due to noise in the parameters
We will examine the accuracy of the acquired scene as a function of small errors in the
parameters, using the convergent camera model. First we examine the parameters from the
simple model; baseline b, focal lengths f, their combined effects b and f, and the
convergence angle α. For the parameters of the general model (lens distortion, non square
pixels, more rotational angles and different focal lengths for the two cameras), we will
describe the errors by equivalent errors in the correspondence field σcor-equi and then use
(2.67), the scene accuracy model for correspondence errors. The errors are dealt with
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separately without taking dependencies into account. Since their mutual effects may cancel
out one another, the calculated errors correspond to worst-case errors. We assume skew,
CCD misorientation and mispositioning to be zero.

Baseline
If the baseline b is estimated with an error ∆b, then all acquired scene points are scaled in
the SF frame by a factor 1+∆b/b around OSF. Thus, this error has a global character with the
following effects:

 • Global translation of the acquired scene on a line towards or away from OSF

 • Global scaling
 • Orientation and shape (all angles) are preserved

In self-calibration methods, b = 1 [bu]. If the acquired scene is interpreted in meters, a
similar scale error appears.

Focal length
If the focal length f of the cameras is estimated with equal error ∆f, the following can be
seen from Figure 2.16 for the convergent setup:

 • Position and orientation of the acquired scene remain fixed
 • Global scale change by 1-∆f/f

• Small deformations: when f is overestimated, the kite-like shape of the scene becomes
more square

The ∆f has an impact on γ via (2.51). Then (2.55) describes the scale change which is linear
with γ. The deformations are described by the dx and dz terms of (2.55). For larger γ, (2.53)
yields an additional anisotropic scaling in the zSF direction, which is 1/(1- ½ γ2) for α = 90°.

Baseline and focal lengths
If the errors ∆b and ∆f are combined, they may cancel out one another’s scaling effects:

 • Scale and orientation remain fixed
 • Position may change
 • Small deformations: the shape of the scene may change between kite-like and square

Convergence angle
The error ∆α in the estimation of the convergence angle has the following effects:

 • Position of the acquired scene changes in the zSF direction
 • Orientation remains fixed
 • Small deformations: the shape of the scene may change between kite-like and square

The translation is described by (2.52) and the deformations by (2.55).
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Lens distortion
If lens distortion is not modeled, the Ks are zero and the errors in the Ks are equal to the
actual Ks themselves. The resulting scene errors can be modeled similarly as in (2.67) due
to errors in correspondence field. The σcor has to be replaced by an appropriate σlens-dist that
represents the lens distortion in pixels, e.g. 5-10 [Tsai87]. Unlike errors in the
correspondence field, the lens distortion errors are distributed non-uniformly over the image
(zero in the center) and highly correlated over the image. The scene will thus be correct in
the center and deformed globally.

If lens distortion is modeled but the Ks are estimated with error ∆K, then the appropriate
σlens-dist must be scaled with the average of the relative accuracies of the Ks:

σ σcor equi lens dist
K KN

K

K− −= ∑1 ∆

all s

(2.69)

In our model, NK = 4 (K3 and K5 for each camera).

Pixel ratios
For errors ∆sy;L and ∆sy;R in the pixel aspect ratios sy;L and sy;R, the equivalent
correspondence error is:
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This error holds at the top and bottom scan line of the CCD, where it is maximal. In the
center scan line, the error is zero. For N = 1000, sy = 1 and ∆sy = 0.01, the equivalent
maximum error is 10 pixels.

Two focal lengths
For errors ∆fL and ∆fR in the focal lengths fL and fR, the equivalent correspondence error is:
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(2.71)

This error holds at the border of the CCD, where it is maximal. In the center, the error is
zero. For N = 1000, f = 1000 and ∆f = 10, the equivalent maximum error is 10 pixels.

General rotation angles
If the rotations around the optical axes of the cameras, ϕSF

LFL z; and ϕSF
LFR z; , have errors of

∆ϕz, the equivalent correspondence error is:

σ ϕcor equi zN− = ∆ (2.72)
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This error is holds at the border of the CCD, where it is maximal. In the center of the CCD,
the error is zero. For N = 1000, an error of ∆ϕz = 1° already produces maximum errors of
about 17 pixels.

The viewing angles of both cameras around the baseline, ϕSF
LF x; , are coupled via (2.3). If

one camera rotates upwards, the other rotates downwards. In a first approximation, this
yields only intersection errors via (2.48) in the triangulation process, but no acquisition
errors via (2.47). The equivalent correspondence error is then approximated by zero:

σ ϕcor equi x− = 0∆ (2.73)

The two angles ϕSF
LF y; determine the position of the acquired scene in the xSF and zSF

directions. In the simple model, this was done by α, which could only move the scene along
the zSF axis. In the general model,  if both angles contain errors, the global position of the
scene will change both in xSF and zSF directions, but the orientation and shape will remain
practically the same. This produces an equivalent systematic error in the correspondences,
but the random error can be approximated by zero:

σ ϕcor equi y− = 0∆ (2.74)

2.7 Conclusions
In this chapter we described a general model for stereo cameras. As a huge amount of
literature on this topic already exists, the main goal was to unify these models in their
notation, their model properties and the ability to estimate their parameters by camera
calibration.

A new notation was introduced, borrowed from tensor notation in physics, which helps to
keep the models comprehensible despite the large number of variables used. We showed the
relations between our model and many other models from literature, aided by the new
notation.

A single, general camera model was designed containing only parameters that correspond to
physical measurable quantities such as lengths and angles. This makes it easier to model the
cameras and to verify the estimated parameters. The same model can be used both for fixed
and self-calibration methods.

Lens distortion has been dealt with in detail; we focused on both modeling and
computational properties. On the one hand, lens distortion plays an important role in
enhancing the quality of the model of any practical camera. On the other hand, we
conjectured that the ‘artifact’ lens distortion might be used to our advantage in self-
calibration approaches. A theoretical proof exists which says that cameras without lens
distortion cannot be calibrated accurately unless the model has 7 or less parameters. With
such a simple camera model, scenes cannot be acquired in a geometrically correct and
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accurate way. However, it is not known whether this proof also holds if lens distortion is
present in the cameras as well as in the camera model. We will be able to test this in the
next chapter with our model that includes lens distortion.

Less complex models were derived from the general model, and compared with similar
models from literature. These include e.g. pinhole models, in which the lenses are assumed
to be ideal, i.e. without distortion. We discussed the parallel camera setup in detail, to be
used in the PANORAMA system in Chapter 6.

Finally, to acquire the scene, we must triangulate corresponding pixels from the left and
right image from the stereo pair (to be estimated in Chapter 4). The triangulation process
accompanying our model was described in detail, as well as the properties of the resulting
scene. These include the position, the size, the accuracy and the resolution of the scene, for
which simple rules of thumb were derived. The results can be used before scene recording
to make proper choices for the camera setup.

The work done in this chapter is meant as a first step towards scene acquisition. The next
chapter deals with stereo camera calibration, which makes use of the camera model defined
in the current chapter. After correspondence estimation in Chapter 4, we will be able to
apply the triangulation process we defined in the current chapter. For the PANORAMA
system design in Chapter 6, we have discussed the parallel camera setup in detail and found
simple guidelines to determine the scene properties.



Chapter 3 

Stereo camera calibration

3.1 Introduction
This chapter deals with the calibration of the stereo camera. Figure 3.1 shows its role in the
scene acquisition process.

Scene

bα

Stereo
camera

Images

General stereo
camera model { },....,bα=Θ

Camera
calibration

$Θ

Specific
camera model

Self
calibration

Triangulation

Acquired
Scene

Correspondence
estimation

Figure 3.1 The scene acquisition process. This chapter deals with the camera calibration algorithm
(shown dotted).

In Chapter 2, we designed a general, parameterized camera model. The task of camera
calibration in this chapter is to estimate the values for these parameters. The parameters
describe a single camera model that is specific for the actual cameras.

There are two major kinds of camera calibration. The first is fixed calibration, which
originates from photogrammetry [Brow71, Slam80]. Shortly after, it was introduced in the
computer vision literature, where it is often referred to by the more general term calibration
[Wolt78, Tsai87, Weng92, Wei94] and also by strong calibration [Pede99]. In fixed
calibration we make use of a highly controlled scene before recording and processing the
actual scene. Figure 3.2 outlines the calibration procedure. The controlled scene consists of
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a rigid object with some special markers on it. The geometric and photometric properties of
the markers are known precisely, so they can be located in both images. In this way a
corresponding point pair is found for each of the markers. The general principle of fixed
calibration is to search for those camera parameters for which triangulation of all
corresponding marker-point pairs gives an accurate reconstruction of the calibration object.
In that case, the camera model represents the actual cameras accurately.

Calibration objectStereo cameraImages

Parameter
estimation

General
camera model

Object model

Feature point
localisation

Photometry and
rough geometry

Accurate
geometry

Model
parameters

specific
camera

Figure 3.2 Fixed calibration.

Fixed calibration has two drawbacks. First, it needs user interaction, since a special object
has to be manufactured and recorded. Secondly, the cameras may not undergo any change in
between the recordings of calibration object and actual scene. Each time a change is made
in the camera setup, such as zooming in or out, the calibration has to be repeated.

Many cases exist in which we cannot use fixed calibration: scene acquisition from ancient
stereo photos, from very small or very large scenes for which no calibration object can be
made, in hazardous environments where user interaction is unwanted or impossible, or for
dynamical scenes that require the cameras to undergo changes during recording (zoom,
orientation). In such cases, we must resort to a calibration method that uses only the images
of the actual scene.

Currently, research is focusing on self-calibration [Arms96, Rede98d, Faug92], sometimes
referred to as autocalibration [Ziss98], active calibration [Basu95] or blind calibration
[Pede99]. In self-calibration, the calibration is performed using images of the actual scene.
First corresponding pixels between the left and right image are estimated, see Figure 3.1
(described in Chapter 4). The fact that the light rays of corresponding pixels must intersect,
even if we do not know exactly at which position in space, provides a constraint on the
camera parameters enabling their estimation. This does not require a special object, relieves
the user of any interaction [Poll98, Rede98d] and allows for continuous camera changes
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during recording. In [Pede97a, Pede99] a calibration technique is described that employs a
calibration object with a geometry that is only roughly known, but is refined (re-calibrated)
during the calibration of the cameras. It lies more or less in between the fixed and self-
calibration methods.

The correspondences needed for self-calibration are estimated using some
photometric/geometric model of the scene. These are e.g. the Constant Image Brightness
constraint (scene point emits light uniformly in all directions, see Chapter 4) or the presence
of corners [Poll98], or smooth scene surfaces [Rede98d]. These are very general models for
a very large set of possible (natural) scenes, but still, it contradicts the statement that self-
calibration does not require a priori information about the scene [Arms96, Luon93, Poll98].
In structure-from-motion applications, where scenes are acquired by processing of multiple
images from a single camera, similar prior knowledge of the scene is required [Jeba99].

The scene models in self-calibration encompass all natural scenes. Such general models are
much less informative or accurate compared to the object models used in fixed calibration,
that contain highly detailed scene information. Therefore, it is much harder to obtain the
parameters in self-calibration. First, since we have no reference to the standard meter, the
absolute scale of the scene cannot be obtained. Secondly, it can be proven that if self-
calibration is applied on cameras with ideal lenses, we can measure at most 7 parameters
[Arms96, Csur97, Luon93]. Any stereo camera model that has more parameters results in
incomplete parameter estimation. For successful calibration, we thus need extra constraints
or knowledge [Deve96], such as a  known pixel aspect ratio [Poll98].

In this chapter, our contributions to the field of camera calibration are the following. We
will

 • derive a marker detection scheme for fixed calibration that is fully automatic and
accurate up to 0.1-0.01 pixel by incorporating curvature effects due to perspective and
lens distortion.

 • unify fixed and self-calibration methods.

 • use the Bayesian probability framework throughout the calibration procedure.

 • apply simulated annealing as a general search algorithm in the calibration, which spares
the designer analytic work and provides high flexibility in choosing a camera model.

 • show that we can measure more than 7 camera parameters by self-calibration, provided
that lens distortion is present in the cameras and their model.

The majority of the chapter deals with fixed calibration in detail. From that point on, the
step towards self-calibration can be made with minimal effort. Section 3.2 describes the
calibration object for fixed calibration. We will outline the marker extraction procedure
globally in section 3.3, while the details can be found in Appendix D. We validate the
marker detection algorithm by experiments in section 3.4. The parameter estimation
algorithm for fixed calibration is then explained in section 3.5, followed by experiments in
section 3.6. We will derive the self-calibration algorithm in section 3.7, followed by
experiments in section 3.8. Finally, section 3.9 concludes the chapter.
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3.2 Calibration object
The calibration object should contain a number Nmarkers of marker points Pi that have a very
well-known geometric model and photometric model. A theoretical example of a perfect
calibration object is a transparent box made out of glass, with a large number of small
spheres, uniformly distributed in the box volume with known positions and different colors.
The centers of the spheres are the marker points Pi. Then, if the spheres do not occlude one
another, they can easily be detected in the images by color segmentation. The apparent 2-D
center is then an approximation of the real projection of the 3-D sphere center.

The geometric model of the calibration object must be given in some reference frame; we
call it the calibration reference frame CF. The position and orientation of this frame can be
chosen arbitrarily with respect to the object. The geometry of the points is then given by:

Pi
CFσ (3.1)

In our scheme, the CF frame is not related to the camera system and thus has to be
estimated along with the camera parameters, introducing 6 additional parameters. In many
other schemes, the scene frame SC is chosen to be CF rather than SF. This avoids the
introduction of the 6 extra variables, but the camera model itself then contains 12 external
parameters instead of 6, as in our case (see section 2.3.2).

In order to obtain parameters that yield an accurate acquisition of the actual scene, we must
ensure that the calibration object occupies all 3-D space that will be occupied by the scene
later on [Pede99]. Accurate manufacturing of such possibly large objects is very expensive.
Often a much simpler calibration object is used, such as a planar object. The 3-D scene
space is then filled by recording the plane in a number Nview of different positions and
orientations. This yields a compound calibration object with Nmarkers=NviewNplate-markers marker
points Pij in 3-D space. In [Tsai87] it is found that no specific orientations of the plane are
required for the compound object (a number of coplanar orientations differing only in
position suffices). Each of the views also yields a different CFj frame, and the coordinates
of the points are now only known through:

P P Pij i i
CF j

CF

CF j CF CF
σ

σ
σ σ σδ= = (3.2)

The δ represents the fact that changing the orientation of the plate in 3-D space does not
change its model in the CF frame. In the last equality in (3.2) it is defined that the σSF and
σSF;j indices run over {x,y,z} simultaneously.

In the end, we need to know the 3-D positions of all points in the scene frame (SF in our
case). Therefore, we must estimate the position O and orientation V of all CFj frames along
with the camera parameters. This introduces 6Nview parameters in addition to the Ncam-model

parameters from the stereo camera model. We then have:

P V P Oij i CF
SF

CF j

SF CF

j

SFσ
σ
σ σ σ= + (3.3)
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Our calibration object is a planar, black object with Nplate-markers = 48 = 8x6 white circular
markers placed on a simple grid, see Figure 3.3. The feature points Pi are the centers of the
markers.

OCF

xCF

yCF

zCF

P0 P7

P40 P47

Figure 3.3  The calibration object.

Two versions of the object are available, see Table 3.1. Their CF frames are defined such
that the origin is in the center of all markers. The orientation is chosen such that the zCF axis
is orthogonal to the plane and the xCF and yCF are aligned with the markers. The marker
index starts at the bottom left and runs from left to right, from bottom to top, ending in the
top right corner. The object is symmetric under 180° rotation.

Global size center-to-center marker diameter type Accuracy

A1 10 cm 4 cm professional xy 10 µm, z 20 µm

A4 3 cm 1.5 cm laser printer xy 0.2 mm, z better

Table 3.1 Two versions of the calibration object.

The A1 plate is a professional plate which has been calibrated by the manufacturer. We
made the A4 plate ourselves by printing the marker pattern with a Hewlett Packard 5SiMX
laser printer. The sheet of paper was put in cheap planar glass frame. We calibrated the
plate manually with an accurate Mitutoyo ruler.

3.3 Marker detection
Our marker detection scheme is fully automatic, extremely robust and very accurate,
outperforming all current schemes in literature. The procedure is done separately for the
multiple views of the calibration object as well as for the left and right images. It involves
seven steps:

 • Finding regions that possibly contain a marker.

 • Design of a parameterized ellipse model of a single marker inside a region.
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• Estimation of the photometric parameters for each region (e.g. SNR).

 • Detecting valid regions by a check on the photometric parameters.

 • Estimation of the ellipse position within each region.

 • Relating each ellipse with a marker on the plate by sorting all ellipses globally in the
8x6 grid, additionally discarding the remaining falsely detected regions.

 • Estimation of the marker centers Pi by incorporating curvature effects due to lens and
perspective distortion.

Figure 3.4 illustrates the steps. The justification for so many steps is that we are faced with a
task that seems quite simple, but in fact incorporates all aspects of camera calibration all at
once. Since the camera parameters are unknown at this moment, the markers may appear in
the images as circles, ellipses (due to slanted views) or even other shapes (due to lens
distortion). From their photometric appearance we only know that there is a substantial
contrast between the markers and the plate. The images may contain noise and may be
slightly defocused (edges of markers less sharp). The scheme must be robust against or
invariant to all these effects. Therefore, in each step we either make mild assumptions about
the effects or try to estimate them along with the markers, without estimating actual camera
parameters as this should be done by the calibration scheme.
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Figure 3.4 The marker detection scheme.

The algorithm contains two new localization refinement methods. After the markers are
roughly found by the center OR of each region R, a well-known method for finding the
marker center is the ‘center of gravity’ method, which determines the average of the image
coordinates in the region weighted with luminance, here denoted by Wlum. Our first
improvement uses the fact that the marker shape is (almost) an ellipse: we replace the
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luminance weight by a refined weight Wellipse that is less sensitive to noise. After sorting the
markers, we perform our second new refinement by determining the marker centers while
incorporating curvature effects due to lens and perspective distortions. In [Heik97] it was
first shown that taking into account curvature improves the results. In the next section we
will see that our algorithm outperforms all algorithms currently available.

A detailed description of the algorithm can be found in Appendix D.

3.4 Marker detection experiments
We evaluate the accuracy of the marker detection scheme by producing synthetic images of
a synthetic calibration object. This gives us the ground truth values of the marker positions
in 2-D image coordinates.

The synthetic plate has the properties of the A4 plate from Table 3.1. The adopted camera
model is the general model from Chapter 2 in Table 2.3, of which only one camera will be
used. For several sets of camera parameters and plate positions and orientations, we have
constructed synthetic images by ray tracing. This procedure is described in section 2.5
(about triangulation), except that here the light rays are not triangulated with a ray from a
second camera, but intersected with the synthetic plate. In the ray-tracing procedure, five
additional elements are taken into account:

 • For each image pixel, NoverxNover rays are traced distributed over the pixel area, and
their intensities are averaged. This models the different light rays that reach a single
pixel on the CCD chip of a real camera.

 • The image is linearly filtered by a uniform smoothing filter with size NsmoothxNsmooth,
and a 3x3 edge enhance filter  [-δedge 1+2δedge -δedge ] [-δedge 1+2δedge -δedge ]

T. This
models slight defocus of the lens and deliberate image enhancement filters in actual
cameras.

 • The brightness of the background and plate are not uniform as we added ∆I = bxI + cyI.
This models specular reflectivity of light on the plate.

 • Gaussian noise is added with σnoise. This models thermal noise in the CCD and further
signal processing in the camera.

 • The luminance is discretized to 0-255, modeling the discretization in cameras that
provide digital images.

The images have CCIR601 size with Nx = 720 and Ny = 576. Figure 3.5 shows some images
generated. Table 3.2 shows the results of the detection algorithm. The experiments were
performed with the same settings for the marker detection algorithm. The systematic and
random errors are shown, given by
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ε µ µ

ε σ σ

sys x y
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= +

| | | |

2 2
(3.4)

where µx , µy is the marker error averaged over the 48 markers, and σx , σy the standard
deviation. The results are given for four stages in the algorithm; the region center OR, the
ellipse center measured via Wlum and via Wellipse, and the final result of the marker center
with curvature compensation (see Appendix D).

In experiment A we used a perfect pinhole camera model, the calibration plate was exactly
parallel to the CCD, Nover = 16, Nsmooth = 1, δedge = 0, a = 20 (plate luminance), k = 200
(marker contrast), b = c = 0 and σnoise = 0. For each of the other experiments, the differences
with a previous experiment are described. Figure 3.5 shows the images used for experiments
A, B and N.

(a) (b) (c)

Figure 3.5  Synthetic images to evaluate the marker detection algorithm, a) experiment A, b)
experiment B, c) experiment N.

From all experiments, we observe in general that:

 • The region detection works robust and with a constant accuracy of about 1-2 pixels.
 • The conventional Wlum approach provides about 0.1 pixel accuracy.
 • The Wellipse refinement method works about 2 times more accurately than with Wlum.

• The curvature algorithm improves the results 10 to 100 times, mostly due to a reduction
of the systematic error.

Further, from experiments C-D we see that discarding the oversampling of the synthetic
images during rendering limits the accuracy of the measured marker positions. The effect is
only noticeable when curvature is taken into account. From experiments B-E and M-N we
observe that making the markers smaller may enhance accuracy. This can be explained by
the fact that curvature effects become quadratically less in size at smaller scales. However,
if the markers’ size is reduced more and more, the number of pixels in the regions will get
smaller and image noise will prohibit any further gain in accuracy. From experiments C-H
we observe that image smoothing has a positive effect on the determination of the ellipse
center, but a negative effect on curvature refinement. This can be explained by the fact that
the Wlum and Wellipse refinement procedures estimate the luminance center of the marker, of
which the exact position is not affected by smoothing. The curvature refinement suffers
from smoothing, since it assigns a different weight (G) to each pixel. The smoothing then
exchanges luminance among pixels with different weights.
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Description
OR

εsys εrnd

Wlum

εsys εrnd

Wellipse

εsys εrnd

Curvature
εsys εrnd

A Frontal view 1.75    0.45 0.000  0.057 0.000  0.000 0.000  0.001

B
Large plate slant
A with ϕy = 45° 1.38    0.45  0.13  0.084 0.12   0.038 0.001  0.007

C
Normal plate slant

A with ϕx = ϕy = 10° 1.41    0.46 0.080  0.056 0.076  0.005 0.000  0.001

D
No sampling within pixels

C with Nover = 1 1.41    0.43 0.079  0.056 0.079  0.006 0.010  0.055

E B with 50% smaller markers 1.46    0.49 0.021  0.096 0.030  0.009 0.000  0.002

F
Low contrast high noise, 14 dB
C & a = 70, k = 100, σnoise = 10 1.41    0.45 0.088  0.059 0.072  0.029 0.011  0.028

G
Nonuniform background

C with b = c = 1 1.41    0.46 0.080  0.055 0.075  0.005 0.000  0.002

H
Image smoothing
C with Nsmooth = 3 1.37    0.47 0.007  0.056 0.076  0.028 0.024  0.022

I
Image edge enhancement

C with a = 70, k = 100, δedge =
¼

1.37    0.45 0.076  0.052 0.075  0.020 0.003  0.019

J
Effect of pixel ratio and skew

B with sy = 0.8 and θ = 5° 1.36    0.46 0.13   0.072 0.12   0.039 0.002  0.007

K
Effect of lens distortion

B with K3 = 1 and K5 = ½ 1.31    0.51 0.15    0.16 0.15    0.16 0.001  0.030

L K with 50% smaller markers 1.45    0.47 0.049  0.086 0.037  0.039 0.001  0.008

M

All effects, B with
K3 = K5 = ½, sy = 0.9, θ = 1°
CCD mispositioning [20,30],

misorientation [5°,4°],
a = 70, k = 100, σnoise = 5

1.46    0.44 0.076  0.084 0.077  0.050 0.063  0.022

N M with 50% smaller markers 1.45    0.41 0.025  0.084 0.025  0.029 0.008  0.026

Table 3.2  Results of the marker detection algorithm. Systematic and random errors are shown in
pixels, at four different stages in the algorithm: the region center OR, the ellipse center measured with
conventional Wlum and new  Wellipse methods, and the final result of the marker center with curvature
compensation.

For the final accuracy we find:

 • The systematic errors are almost zero, compared to the random error.
 • The errors are isotropic, i.e. the same in all directions.
 • If all experiments are combined, an average error is found of about 0.01 pixel.
 • In worst-case situations such as experiment M, the accuracy is still well below 0.1

pixel.
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Figure 3.6 shows a scatter plot of the errors from all experiments. The mean is well below
10-3 pixels from the center, and the resultant σmrk ≈ 0.013.

Figure 3.6 Scatter plot of the final marker errors from all experiments. It shows that the errors are
isotropic and zero mean. The σmrk estimated from this plot is 0.013.

From subjective inspection of the marker position errors and more unsystematic
experimental evidence, we believe that our results can be improved further. The automatic
adaptation of the A? size with respect to the observed image noise and smoothing may be a
future research area. Further, we observed that most of the errors in the low-noise
experiments were concentrated in the outer ring of markers, in which no 3x3 neighborhood
can be found during the curvature refinement (see Appendix D). Discarding these markers
from a 10x8 grid may improve the results.

Other results from literature provide σmrk of 0.1 pixel in [Pede97a], 0.1-0.2 pixel in
[Eela99b], 0.02 pixel in [Heik97], where also perspective distortion was included, 0.2 pixel
in [Pede99] and 0.3-0.5 pixels in [Tsai87]. Clearly, our results outperform all of them, even
in the extreme situation as depicted in Figure 3.5c, where small markers are visible in low
contrast images with high noise, considerable lens distortion and specular reflections of the
calibration plate.

3.5 Fixed calibration
In fixed calibration, the parameter estimation algorithm must find an estimate for all
Ncam-model parameters from the cameras as well as the 6Nview calibration plate positions and
orientations, yielding Nparams in total. Figure 3.7 shows the principle of solving this task. The
input of the algorithm consists of the geometrical model of the calibration plate and the
measured 2-D marker positions in the left and right images. The method searches for
parameters that minimize the difference between the reconstructed and the actual calibration
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object in 3-D space. Using a first guess of all parameters, the algorithm positions the
calibration object in SF space via (3.3), and reconstructs a calibration object from the
measured markers by triangulation (Chapter 2). The difference between these two objects is
calculated, e.g. the sum of all lengths of vectors going from a point on the actual object to
the corresponding point on the reconstructed object. Then some search algorithm adjusts the
parameters until the difference is minimized. Such algorithms can be analytical, giving the
final answer in one step, or iterative, giving the answer or an estimate in a number of steps.
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Figure 3.7 Parameter estimation by minimizing 3-D scene differences.

Figure 3.8 shows a method that is similar to the one above apart from the difference
measure. The actual object is not only positioned in SF space, but it is also projected to the
left and right images (see section 2.3). The difference is then calculated between measured
2-D marker positions and reconstructed 2-D marker positions.
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Figure 3.8 Parameter estimation by minimizing 2-D marker position errors.

In the next subsections, we will discuss the choice between the 2-D and 3-D methods, the
formulation of the difference measure using the Bayesian probability framework, search
algorithms for the minimization and finally how to evaluate or extract the accuracy of the
estimated parameters.

3.5.1 Difference measure in 2-D or 3-D
We select the 2-D method for the following two reasons. First, we have a well-defined
quantitative model for the differences in 2-D. Assuming that the camera model is
appropriate, the 2-D differences are due to marker detection errors. For these differences,
we have a good probabilistic model; they are modeled independently by a Gaussian, with
µ = 0 and σmrk ≈ 0.01, found in section 3.4. In 3-D space, we can determine the difference
between the actual calibration plate model and the plate reconstructed from the measured
markers, but we do not have a quantitative probabilistic model for these differences. In
[Roth97], a similar argument is made in favor of the 2-D method.
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Secondly, the 2-D method can easily be extended to self-calibration schemes. The σmrk from
the marker error model is then replaced by σcor from a correspondence estimation error
model. A 3-D method cannot be applied in self-calibration, since then we have no object
model and cannot determine the difference between the true and reconstructed object.

3.5.2 Formulation in the Bayesian probability framework
The Bayesian probability framework provides an elegant and general formulation tool. It
allows us to formulate the 2-D difference measure and to integrate prior knowledge about
the camera parameters. Only recently, the Bayesian approach has received attention in
camera calibration [Pede99, Rede98d, Rede99b]. In our approach, we model the following
parameters as random variables:

 • Φ : all Nparams parameters for the stereo camera and the positions and orientations of the
calibration plates. The values of Φ are denoted by φ, the single parameters by φi.

• M : the Nmarkers measured marker positions in the images. The marker detection
algorithm supplies the values m of M. A single marker position is denoted by
{ Ix

im , Iy
im }.

All models that contribute to the relation between Φ and M can be incorporated in a single
joint probability density function (pdf) p MΦ, (all parameters are continuous). We then define

the ideal solution φMAP by the Maximum A Posteriori (MAP) criterion:

( )φ φ
φMAP Mp m= arg max ,|Φ (3.5)

The conditional pdf can be obtained from the joint pdf, but that is not necessary since m is a
constant in the maximization (3.5):

( )
( ) ( )φ
φ

φ
φ φMAP

M

M
M

p m

p m
p m= =arg max

,
arg max ,,

,
Φ

Φ (3.6)

The joint model is designed by decomposing it in two parts:

( ) ( ) ( )p m p m pM MΦ Φ Φ, |, ,φ φ φ= (3.7)

The pΦ contains all our prior knowledge about the camera parameters, e.g. the prior camera

model. The pM |Φ contains the model that predicts where the marker detection algorithm will

find the markers.
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3.5.3 Prior model for camera parameters and plate positions
If we set pΦ to a constant, we get a uniform prior probability for all possible camera and

calibration object setups. With this, we avoid any bias towards a particular setup, which
makes the procedure very generally applicable. However, some prior knowledge that is
generally applicable is the fact that the baseline and focal lengths must be positive. We also
know that the plates are positioned such that they are visible. Further, we always have some
upper bound for parameters that model unwanted effects, such as lens distortion and CCD
mispositioning. Incorporating this knowledge avoids spurious solutions.

We will introduce the following model for pΦ :

( ) ( )p TG min maxi i i i i

i

Φ φ µ σ φ= ∏ , , , ,
all parameters

(3.8)

The parameters are modeled independently by a truncated Gaussian (TG) probability
density function (see Figure 3.9):

( )
( )

TG min max x ke min x max
x

, , , ,µ σ
µ

σ= < <






−
− 2

22

0 else

(3.9)
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Figure 3.9 The truncated Gaussian TG.

The TG contains a minimum min, maximum max, mean µ and standard deviation σ. The k is
a normalization constant. The TG enables the features shown in Table 3.3.

Table 3.4 shows the prior model for the general stereo camera model of Table 2.3 and all
plate positions and orientations. Less complex models from section 2.4 can easily be
implemented by setting the appropriate σ to zero.
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σ min max Parameter

∞ -∞ ∞ no prior model and completely unbiased

0 - - fixed to µ, is effectively eliminated from the model

σ -∞ ∞ Gaussian with µ and σ
∞ min max Uniform between min and max

Table 3.3 The truncated Gaussian TG.

Parameters min max µ σ explanation

b 0 ∞ 1 ∞ baseline is always positive

ϕSF
LFL x; -90° 90° 0 ∞ viewing zones of camera

must intersect

ϕSF
LFL y; ϕSF

LFR y; -90° 90° 0 ∞ viewing zones of camera
must intersect

ϕSF
LFL z; ϕSF

LFR z; -180° 180° 0 ∞ camera rotation around
the lens optical axis is free

OPFL
zLFL  OPFR

zLFR 0 ∞ 1000 ∞ focal lengths are always positive

ϕLFL
PFL xy; ϕLFR

PFR xy; -∞ ∞ 0 1 CCD mispositioning is small

OPFL
xyLFL  OPFR

xyLFR -∞ ∞ 0 1 CCD misorientation is small

K3;L K5;L K3;R K5;R -∞ ∞ 0 0.1 Lens distortion is small

sy;L      sy;R 0 ∞ 1 0.1 Pixel aspect ratio is about 1

θL θR -∞ ∞ 0 0.1 CCD skew is small

OCFj

SFσ
−∞
−∞
−∞
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Plate orientation in view j,
mean is frontal view,

must be visible gives min/max/σ

Table 3.4 Prior model for the general stereo camera model and plate positions. Discarding of a
parameter is easily done by setting its σ = 0.

3.5.4 Predicting where the markers will be found
The pM |Φ contains the model that predicts where the marker detection algorithm will find

the markers. It consists of two parts. First, since Φ appears as prior knowledge in the p
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subscript, we accept φ as the true camera and plate position parameters. Then we project the
markers on the images according to section 2.3. The projections are the predicted marker
positions mpred. These are deterministically determined given φ. In the second step, we
model that the marker algorithm finds the markers on the predicted positions detoriated by
Gaussian noise with µ = 0 and σmrk. We then obtain:

( )
( )( ) ( )( )

∏
−+−
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φ (3.10)

3.5.5 Search algorithms for parameter estimation
The task of the search algorithm is to calculate (3.6), that is, the maximization of (3.7),
consisting of (3.8) and (3.10). First, a practical challenge is the order of the probabilities.
Since the dimensionality of the parameter space is in the order of 30, the values of the pdfs
in such a large space are extremely small. If we have φMAP available except for one camera
angle that is off-set by just 1°, the predicted markers mpred in the image may shift by e.g. 5
pixels, which is about 500σmrk. For two views of the calibration plate, 96 markers are off-set

by 500σmrk. The pM |Φ will then be in the order of 10 106− . Such small numbers can be

avoided by using energy U = -ln p , which gives with (3.5)-(3.7):

( ) ( ) ( )φ φ φ φ
φ φMAP M MU m U m U= = +arg min , arg min ,, |Φ Φ Φ (3.11)

For U M |Φ we find
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And for UΦ :
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22
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(3.13)

In our implementation, we will use some arbitrary large number Ninf to represent  ∞. If we
combine (3.11), (3.12) and (3.13) and discard constants, we obtain:
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Many approaches are available for minimizations. Analytic formulations have been derived
for camera calibration, e.g. [Boug98, Brow71, Faug92, Roth97, Truc98]. Their advantage is
that the exact solution is found very fast, but they have many drawbacks. The analysis is
generally quite complex and only in rare cases, non-linearities due to lens distortion are
included [Tsai87]. Further, the method is not flexible in the sense that changing the camera
model (e.g. discarding a parameter) may take quite some work. Also, they assume that there
is only one single solution. If there are many (e.g. in case of a degenerate situation such as
an orthographic camera), the approach may break down due to singularities.

Iterative approaches are also widely available. Their task is to wander around in the φ
parameter space, interpreting (3.14) as just some function to minimize. In general, the exact
solution is never reached, but a very good approximation can be obtained. Since little or no
knowledge of the application domain (camera calibration) has to be put in the search
algorithm, these methods save the designer much analytical work, enabling the introduction
of e.g. lens distortion. If multiple best solutions exist, no singularities are encountered but
an arbitrary choice is made among the best solutions.

The most well-known algorithm is gradient descent [Pres92], which walks along the
gradient of U, hopefully towards the global minimum. In camera calibration, the Levenberg-
Marquard (LM) method is popular [Arms96, Heik97, Stei97a], as it incorporates additional
features to accelerate convergence [Pres92]. A disadvantage of these methods is that they
require derivatives of U, which means considerable analytical work for the designer. If the
camera model is changed, the work has to be done again. Further, these methods require a
good inital guess of φMAP to avoid local minima and provide convergence to φMAP . The
initial guess is mostly found by first applying an analytical method using a simplified
camera model, e.g. without lens distortion [Heik97, Weng92, Zhan93]. In the area of
Structure from Motion (SfM), where N cameras are calibrated one after another, (Extended)
Kalman filters have been applied [Jeba99].

3.5.6 Our simulated annealing (SA) approach
We will use the stochastic search algorithm simulated annealing (SA) [Gema84, Pres92,
Rede98d] to find the camera parameters φMAP. Its drawback is that it is computationally
expensive, but it has several advantages. First, the method does not use any derivatives;
only function evaluations of (3.14). Hence, no analytical work has to be done. This makes
the approach very flexible, since the camera model can be changed very easily. In addition,
SA algorithms start by looking in the parameter space globally, therefore we expect that it
needs no initial guess.
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The basic idea of SA is the following (see Figure 3.10). Based on a current estimate of the
solution φ, a different candidate solution φnew is obtained by adding a random (vector)
perturbation to φ. Then, if U M ,Φ is lower for the new solution (∆U < 0), the new solution is

accepted and will replace the current one. If U is higher (∆U > 0), the new solution is
accepted with some low probability. The fact that now and then worse solutions are
accepted enables the SA algorithm to escape from local minima. The acceptance probability
is regulated by a so-called temperature T. The idea is to start the algorithm with a high
initial temperature T0. Then almost all perturbations are accepted, which allows the
algorithm to wander in the solution space globally, without being dependend on a good
initial solution φ0. Then via some cooling schedule, the temperature is slowly lowered and
the algorithm converges only to better solutions.

Parameters φ Calculate U

Random
perturbation

generator

∆φ = knoiseT

∆U

Decide whether
to accept ∆φ

Temperature T

If yes

∆T = - ∆U/kmass

∆T = - klossT

Figure 3.10 Our simulated annealing search algorithm.

Three parts have to be designed for the SA algorithm:

 • Acceptance probability of worse solutions
 • Random perturbation generator
 • Temperature cooling schedule

For the acceptance probability we use

p eaccept

U

k Tboltz=
−

∆

(3.15)

where kboltz plays a similar role as (but differs in value from) the Boltzmann constant from
physics. This acceptance rule is generally used in almost all SA algorithms [Gema84]. For
the random perturbation generator we a use a basic Gaussian random generator with three
specific additional features. First, we use a Gaussian with zero mean and parameter specific
variance given by:

σϕi
k Tnoise i= ∆ (3.16)
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The perturbations are regulated by temperature T, a scaling constant knoise and parameter
specific constants ∆i, which represent the characteristic scale of each parameter, see Table
3.5. Whenever the prior σ of a parameter is zero, the corresponding perturbation scale
parameter is set to zero.

Parameters ∆ Parameters ∆

b 1 OPFL
zLFL  OPFR

zLFR 100

ϕSF
LFL x; 10° OPFL

xyLFL  OPFR
xyLFR 0.1

ϕSF
LFL y; ϕSF

LFR y; 10° ϕLFL
PFL xy; ϕLFR

PFR xy; 0.1°

ϕSF
LFL z; ϕSF

LFR z; 10° sy;L      sy;R 1

OCFi

SFσ 1 K3;L K5;L K3;R K5;R 0.1

ϕ σ
SF
CFi ; 10° θL θR 0.1°

Table 3.5 Parameter specific random perturbations.

Secondly, each parameter is only perturbed with a probability of 0.2. This enables the
algorithm to continue when any of the scale sizes in Table 3.5 are (temporally) not
appropriate. The third and final specific feature of the random generator is the generation of
the average of all perturbations that provide better solutions:

∆ ∆ ∆φ φ φi
ave

i
ave better

+ = +1 0 99 0 01. . (3.17)

After a while, the ∆φave
 will point more or less in the direction of the gradient towards

better solutions. In each iteration, we randomly select either the Gaussian perturbation
(3.16) or a perturbation that is a multiple of ∆φave:

∆ ∆φ φ= r ave (3.18)

The r is a random number uniformly distributed between 0 and 2.2. Whenever ∆φave
 points

in the right direction, the perturbation given by (3.18) produces better solutions, and thus
the perturbation is fed back in (3.17). Since the average of r is slightly above 1, the scheme
may show exponential convergence, severely increasing the speed of the SA algorithm.
Whenever ∆φave

 points in the wrong direction or has the wrong scale, the scheme reduces to
the normal Gaussian perturbations (3.16) until ∆φave again points in some right direction.

All the specific values mentioned above were determined experimentally on a heuristic
basis.

In [Gema84], a temperature cooling schedule is derived for which the SA algorithm always
yields the global minimum, or MAP solution. This schedule takes an infinite amount of
time. For practical applications, we always have to cool faster. For this, no general rules are
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available. We will use an exponential scheme such as used in [Stil97], in which the
temperature is lowered each step by:

∆T k Tloss= − (3.19)

When the algorithm is working, now and then specific values for T are reached that result in
random perturbations (3.16) of such a scale that many of them lead to a decrease in U. At
these events, we do not want to lower the temperature, since we might miss the opportunity
to lower U further. For this reason, we incorporated a feature that tries to keep the
temperature constant at such events. It does this by giving a counter effect to the cooling
(3.19), shown by the dotted line in Figure 3.10:

∆ ∆T k Umass= − −1 (3.20)

Whenever the solution is losing energy rapidly with a constant pace (∆U << 0), the
temperature will remain fairly constant around an equilibrium given by (3.19) and (3.20).

The algorithm must be started with some initial temperature T0 and solution φ0 and ends
when a minimum temperature Tmin is reached. For φ0 we take the mean value from the prior
model in Table 3.4. Since T is always used together with scale factors kboltz, knoise, kloss and
kmass, we can choose T0 = 1 without loss of generality. The five remaining parameters are
selected heuristically in the experimental section.

3.5.7 Evaluation of the search algorithm
Once the algorithm has stopped, we can verify if it has converged correctly. Using our prior
knowledge about the marker detection algorithm we find the following expectation:
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The scale factor accounts for the fact that the estimated parameters will partly model the
marker detection errors. The factor 4 originates from the fact that each point or marker is
projected to both left and right images (factor 2) and produces an x and an y coordinate
(factor 2). We now construct:

( )( ) ( )( )2

;

imagesboth in 
 viewsallin 

markersall

2

;
2

4

1 φφ IIII y
ipred

y
i

x
ipred

x
i

paramsmarkers

mmmm
NN

A −+−
−

= ∑ (3.22)

The A represents the total amount of marker position errors that are attributed to the marker
detection algorithm, i.e. that could not be explained by the estimated specific camera model.
We expect that A will be about σmrk. If this is more or less the case, we assume that
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• the search algorithm has converged
 • the marker detection algorithm works as expected
 • the general camera model is appropriate

When A is too large, one of the above is not true. Additionally, this may be caused by a
difference between the actual calibration object and its model. In [Pede99], this effect is
actually used to refine the object model. When A is smaller, we assume that the marker
detection algorithm works better than expected.

3.6 Fixed calibration experiments
We performed experiments with both synthetic and real images containing calibration
objects. The results are evaluated with the following methods:

 • Comparison of the remaining marker errors A with σmrk (2-D domain).
 • Comparison of the model and reconstruction of the calibration object (3-D domain).
 • Comparison of the estimated parameters with a ground truth (synthetic images only).

For the 3-D comparison we used both the single plate and the compound object from the
Nview views of the plate. First, all markers in all views are reconstructed in 3-D space to yield
the compound object. This is done by triangulating the marker positions in the left and the
right image like a pair of corresponding points. The reconstructed object is then compared
with the true compound object by calculating the differences in position, orientation and
scale, and finally the remaining deformations. To reconstruct the plate model and compare
it with the true model, the reconstructed compound object is split into the Nview parts. From
each point (marker) the coordinates in its own CF frame are calculated. Then these
coordinates are averaged over all views, which yields the reconstructed plate model. These
errors are expressed in deformations in x, y and z directions.

3.6.1 Synthetic calibration object and images
We used a convergent camera setup with convergence angle α = 90°, see Figure 3.11. First
the simple camera model from Chapter 2, section 2.6 is used and then the general model
from section 2.4, Table 2.3. The images have CCIR601 size Nx = 720 and Ny = 576. The
calibration object consists of Nview = 3-4 views of the synthetic version of the A4 calibration
plate. This plate is about 25 cm wide. To be sure that the compound object fits in the scene
space, we set d to 35 cm in (2.57) and find bγ ≈ 0.5. We set the focal length f arbitrarily to
1000, and then find with (2.51) that γ ≈ 0.6. Thus, we select the baseline to be 80 cm.

The scene is then positioned 40 cm behind the cameras, according to (2.52). Via (2.56) we
find that the scene resolution is about 0.7 mm. If the markers are estimated with 0.01 pixel
accuracy, the triangulated scene points (marker centers) have a 3-D accuracy of 7 µm
according to (2.67). This number is in general well below the 3-D accuracy of any
geometrical model of practical calibration plates.
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3 views of plate

4 views of plate

Figure 3.11 Setup for the stereo camera setup and the calibration object.

Table 3.6 shows the results of the fixed calibrations for the 3-view plate setup. As input for
the fixed calibration scheme we used the known exact markers, the measured markers and
markers of which the position contained deliberately noise of 1 pixel. For the exact markers
we used σmrk = 0.001 to avoid infinity in (3.14). For the measured markers we used the
σmrk = 0.01 found in section 3.4 (for this particular set of images we found σmrk ≈ 0.003).
The prior camera model is a pinhole model without CCD mispositioning/misorientation,
skew or lens distortion. It contains the parameters shown in Table 3.6. The settings for the
SA algorithm are shown in Table 3.7. The low value of kboltz effectively inhibits any
acceptance of worse solutions, i.e. only perturbations to better solutions are allowed. The
SA algorithm showed the fastest convergence if the value of kmass had been selected
inversely proportional to 2

mrkσ . The computational load of the algorithm was between 1 to

20 minutes on an SGI octane computer.

From Table 3.6 we observe the following. In the experiment with the measured markers, the
parameters are estimated very accurately. The errors in the plate reconstruction are in the
order of the expected accuracy of 7 µm. The errors in the compound object are an order of
magnitude larger. This is due to the errors in the estimated plate positions and orientations,
which influence the reconstruction of the compound object. For the noised markers, the
results are similar. The reconstruction accuracies for the plate and compound object are now
only determined by the 1-pixel accuracy of the markers.

The experiment with the exact markers shows an example of how calibration with a
compound object can go wrong catastrophically. The parameters are far off the true values,
and the compound object is reconstructed with errors in the order of 2 cm. The plate
reconstruction, however, is accurate up to 1 µm, and the marker positions are explained up
to 0.001 pixel by the (false) parameters obtained. In a fixed calibration experiment with real
objects and images, only the latter two quantities can be measured, and the very large error
in the compound object remains unobservable.
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Parameters True

Estimated
with exact
markers
σmrk = 0
(≈0.001)

Estimated
with

measured
markers

σmrk = 0.01

Estimated
with noised

markers
σmrk = 1

baseline b

x-rotation ϕSF
LFL x;

convergence  ϕSF
LFL y; ϕSF

LFR y;

z-rotation  ϕSF
LFL z; ϕSF

LFR z;

focal lengths  OPFL
zLFL  OPFR

zLFR

pixel ratio sy;L         sy;R

0.8

 0°

-45° 45°

0° 0°

1000  1000

1 1

0.800

0.00°

-56.2° 33.8°

-0.00° 0.00°

1492       670

1.270     0.999

0.801

0.00°

-45.0° 45.0°

0.00° 0.00°

1002      1000

1.000     0.999

0.809

-0.06°

-44.8° 45.2°

0.15° 0.03°

1004     1017

0.994     1.002

Plate 0 position OCF
SF

0

σ

Plate 0 orientation ϕ σ
CF
SF

0

;

Plate 1 position OCF
SF

1

σ

Plate 1 orientation ϕ σ
CF
SF

1

;

Plate 2 position OCF
SF

2

σ

Plate 2 orientation ϕ σ
CF
SF

2

;

0 0  -0.3

0° 0° 0°

0 0   -0.4

0° 0° 0°

0 0   -0.5

0° 0° 0°

.114  .000  -.278

.00° .00° .00°

.152  .000  -.370

.00° .00° .00°

.190  .000  -.463

.00° .00° .00°

.000  .000  -.301

.00° .00° .00°

.000  .000  -.401

.00° .00° .00°

.001  .000  -.501

.00° .00° .00°

-.002  .000 -.305

.02° -.06° .01°

-.002  .000  -.405

.01° -.01° .02°

-.003 .000 -.505

-.24° -.18° .07°

SA alg. marker errors  A 0 0.0010 0.0152 1.015

Compound Position

reconstruction Orientation

Scale

Deform

0 0      0

0° 0° 0°

1

0

.152   .000  .030

.00° -13.1° .00°

1.015

2 cm

.000   .000  .001

.00° -.04° .00°

1.000

62 µm

.00   .00   .00

-.00° .16° .04°

1.001

1 mm

Plate reconstruction σx σy σz 0 0      0 1   0   0   (µm) 6     6    8  (µm) .5  .4  .6  (mm)

Table 3.6 Fixed calibration results with synthetic images and distortion-free cameras.

SA parameter value
Tmin 10-6

kboltz 10-6

knoise 10-3

kloss 10-4

kmass 10-8 to 10-2

Table 3.7 Parameters for the SA algorithm with fixed calibration.
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We repeated the three experiments several times and found that in all three cases, now and
then the algorithm converges to a false solution. We also performed the experiments with
the 4-view setup shown in Figure 3.11. This always yielded the right solution with similar
accuracy as in Table 3.6. To be sure that this was no coincidence, we also performed
several experiments where we forced one of the focal lengths to some wrong value. If the 3-
plate setup was used, a solution could always be found with very low A. Thus, with false
parameters (by definition in this experiment) the measured marker positions can be
explained fully. The reliability of the parameters found can thus not be guaranteed nor
evaluated by A, which is the only option when using real images. With the 4-plate setup, the
value for A remained several orders higher than σmrk, indicating that it was no longer
possible to estimate the parameters reliably. This is to be expected from a reliable
algorithm, since one parameter was fixed to a wrong value. Thus, our fixed calibration
scheme with the 4-plate setup yields reliable results whenever possible. Via A, this can be
reliably verified.

We found that the prior model influences the results only due to the minima and maxima on
the parameters. The µ and σ of the Gaussian part in the TG function has little effect. In the
experiments in this section, the prior µ and the actual value of both focal length, pixel ratios
and some angles are identical, which may seem to bias the results towards the right solution.
However, during the run of the SA algorithm, many other focal lengths are encountered
before converging to the right values. We repeated the experiments with different values for
the prior model and it did not change the final results.

Table 3.8 shows experiments with a similar camera setup, but with the general camera
model including lens distortion, CCD mispositioning, misorientation and skew. The four-
plate setup was used. The columns give the true parameters, the parameters estimated with
the measured markers using the general prior camera model from Table 3.4, and finally, the
parameters estimated with the measured markers and a pinhole prior model.

We repeated these experiments extensively, but in none of them the algorithm converged
completely to A ≈ σmrk after run times in the order of 30 minutes and more. Thus, the SA
algorithm still limits the accuracy of the parameters in these experiments. However, the
results show that all parameters for the undesired camera properties (lens distortion, CCD
misposition and misorientation) can be measured. The accuracy varies widely from a few
percent to only correctness of the sign. The experiment with the pinhole model gives an A of
about 2.7, showing that the pinhole model cannot explain the observed markers well for
cameras with distortions. The final reconstruction errors are an order of magnitude larger
than those obtained using the general camera model.
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Parameters True
Estimated with

measured
markersσmrk =

0.01

Same, but with
pinhole prior
camera model

baseline b

x-rotation ϕSF
LFL x;

convergence    ϕSF
LFL y; ϕSF

LFR y;

z-rotation  ϕSF
LFL z; ϕSF

LFR z;

focal lengths   OPFL
zLFL  OPFR

zLFR

pixel ratio sy;L         sy;R

0.8

1°

-45° 45°

5° 5°

800     900

1.1     0.9

.802

0.608°

-44.3° 44.6°

4.77° 5.25°

802        900

1.088    0.895

.803

0.67°

-45.93° 49.97°

4.60° 4.90°

813      884

1.160    0.958

Lens distortion K3;L K3;R

 K5;L K5;R

CCD skew θL θR

mispositioning  OPFL
xyLFL  OPFR

xyLFR

misorientation   ϕLFL
PFL xy; ϕLFR

PFR xy;

1 -1

0.5     -0.5

0.1° -0.2°

10   10   5   -5

-4° -5° 5° 4°

1.04    -1.04

0.41     -0.39

0.06° -0.15°

2.8   0.3   4.1   -4.0

-1.7° -7.5° 5.0° 4.9°

0 0

0 0

0° 0°

0 0    0    0

0° 0° 0° 0°

Plate 0 position OCF
SF

0

σ

Plate 0 orientation ϕ σ
CF
SF

0

;

Plate 1 position OCF
SF

1

σ

Plate 1 orientation ϕ σ
CF
SF

1

;

Plate 2 position OCF
SF

2

σ

Plate 2 orientation ϕ σ
CF
SF

2

;

Plate 3 position OCF
SF

3

σ

Plate 3 orientation ϕ σ
CF
SF

3

;

0 0  -0.3

0° 0° 0°

0 -0   -0.4

0° 20° 0°

0 0   -0.4

0° -20° 0°

0 0   -0.5

0° 0° 0°

.002   .001  -.305

.023° -.05° -.03°

.002   .002  -.406

.22° 20.06° .10°

.002   .002  -.406

.23° -20.36° -.06°

.002   .002  -.507

.17° -.12° .06°

-.018   -.002  -.269

-1.41° .15° -.06°

-.022   -.001  -.359

.015° 20.30° -.04°

-.021   -.001  -.359

.40° -15.81° -.09°

-.025   -.002  -.449

2.09° -.28° -.07°

SA alg. marker errors  A 0 0.099 2.747

Compound Position

reconstruction Orientation

Scale

Deform

0 0      0

0° 0° 0°

1

0

.002   .002  -.006

.223° -.158° .014°

1.004

0.63 mm

-.0215   -.001  .042

.12° 1.53° -.01°

0.9635

6.7 mm

Plate reconstruction σx σy σz 0 0      0 65    46   39  (µm) 2.1   1.4  0.7  (mm)

Table 3.8 Fixed calibration results with synthetic images and the general camera model.
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3.6.2 Real calibration object and images
For this experiment we used two semi-professional 3-CCD Panasonic WV-E550E cameras,
equipped with Fujinon TV Zoom lenses. Their analog outputs were digitized to CCIR601
format with 720x576 pixels. Two setups were used; a slightly converging, almost parallel
setup with wide-angle view (zoomed out) using the A1 calibration plate, and a more
convergent setup with the A4 plate, similar to the setup used in the experiment with the
synthetic data. In both cases, the 4-view compound object was used. The general camera
model was used without skew and CCD misorientation as discussed in section 2.4, but
including CCD mispositioning and lens distortion.

Parameters
Slightly converging setup

A1 plate
More convergent setup

A4 plate

baseline b

x-rotation ϕSF
LFL x;

convergence   ϕSF
LFL y; ϕSF

LFR y;

z-rotation  ϕSF
LFL z; ϕSF

LFR z;

focal lengths  OPFL
zLFL  OPFR

zLFR

pixel ratio sy;L         sy;R

.440

-0.07°

-7.37° 4.77°

-0.11° 0.22°

935      936

0.918      0.917

.349

-0.104°

-16.08° 15.83°

-0.773° 0.636°

973    972

0.9124    0.9118

Lens distortion K3;L K3;R

 K5;L K5;R

mispositioning   OPFL
xyLFL

 OPFR
xyLFR

-0.208        -0.191

0.348         0.270

0.748         0.393

0.295         0.753

-0.171        -0.183

0.584         0.362

-5.682        -0.678

-1.615        -1.011

Plate 0-1 z position   OCF
zSF

0 1−

Plate 2-3 z position   OCF
zSF

2 3−

-1.349        -1.581

-1.603        -1.948

-0.667        -0.770

-0.812        -0.951

SA alg. marker errors  A 0.0765 0.0865

Plate reconstruction σx σy σz .34 mm  .21 mm  .68 mm 88 µm 61 µm 115 µm

Table 3.9 Fixed calibration results with real cameras.

Table 3.9 shows representative results from several runs of the SA algorithm. From the
plates only the z positions are shown. To assess the results, we included the following
ground truth data. The baseline and plate positions were roughly measured manually. The
accuracy of these measurements is limited, since our cameras have multiple lenses which
causes the effective lens center to lie somewhere inside the camera housing. Further, the two
cameras are of the same type. We expect that the pixel aspect ratios and the lens distortion
parameters are the same for both cameras and both experiments. Finally, the zoom lenses
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were completely zoomed out in both experiments. We expect all four measured focal
lengths to be approximately the same.

The parameters in the A1 experiment were in agreement with the measurements we carried
out manually (up to a few cm). In the A4 experiment, the baseline was in agreement, but the
z positions of the plate were about 10 cm further from the cameras than expected. We
observe in both experiments that A is slightly below 0.1 pixel, from which we conclude that
our marker detection scheme is at least accurate to 0.1 pixel for real images. Our
expectations concerning the pixel aspect ratios, focal lengths and lens distortion parameter
K3 are more or less satisfied.

Since we used real images, no ground truth data was available for the compound scene
reconstruction. The plate reconstruction could be compared with the plate model. To
evaluate these results in Table 3.9, we first calculate the expected size and accuracy of the
reconstructed scene. We approximate the two setups by the simple setup from section 2.6.1.
For the convergence angle α we use the difference between the two ϕy angles and find αA1 ≈
12° and αA4 ≈ 32°. Then via (2.55) we find for the dimensions of the A1 scene about
1x1.5x10 m and for the A4 scene about 0.3x0.45x1 m. Filling in 0.1 (the observed marker
detection error A) for σcor in (2.67), and N ≈ 650 (the average number of pixels in horizontal
and vertical direction) in (2.56), we find for the expected reconstruction accuracies for the
A1 experiment 0.15x0.23x1.5 mm and for the A4 experiment 46x70x150 µm. These
numbers have the same order of magnitude as the values obtained by reconstruction of the
A1 and A4 plate. In both cases, the relative reconstruction accuracy is about 10-3 to 10-4.

3.6.3 Discussion
Due to the wide variety in notation and types of assessment, it is usually quite hard to
compare results in fixed calibration. We will compare our results with the classic result in
[Tsai87] and the more recent results in [Wei94]. In [Tsai87] a planar calibration object of
2x1.5 inch is reconstructed up to about 1 mil = 0.001 inch. This yields a relative accuracy of
about 10-3. Our results are slightly better, which can be explained completely by the marker
detection algorithm (0.3 to 0.5 pixel in [Tsai87] and < 0.1 pixel for our algorithm). In
[Tsai87] it is found that a number of coplanar views of the calibration plate provides good
results, while in our experiments we needed non-coplanar views. We have no theoretical
explanation for this difference, but Table 3.6 provides an experimental proof that coplanar
views are not always sufficient. In [Wei94] pixel accuracies of A ≈ 0.25 pixel are reported,
similar to our results. The absolute reconstruction errors for the calibration plate were in the
order of 0.3 mm, however, without any reference to the size of the plate.

Summarizing all our experiments, we find:

 • The accuracy of our marker detection scheme is better than 0.1 pixel for real images
from real cameras.

 • Fixed calibration can result in accurate camera parameters and subsequently, accurate
acquisition of scenes. In our experiments with real-image data, our calibration plates



Section 3.6  Fixed calibration experiments 81

were reconstructed with relative accuracies of about 10-4, comparable to other results in
literature.

 • The results have been obtained using the marker detection algorithm with an accuracy
better than 0.1 pixel. For natural scene reconstructions, it can be assumed that the
correspondences found in image pairs have an accuracy > 0.1 pixel. Then the scene
reconstruction accuracy is limited by the accuracies of the correspondences, and not by
camera calibration.

 • Fixed calibration may lead to unreliable results, if a volumetric calibration object is
composed by multiple views of a single, flat calibration plate. This effect can only be
observed if accurate ground truth data of the plate positions and orientations is
available, which is the case in our experiments with synthetic data. We found that the 3-
plate and 4-plate setup depicted in Figure 3.11 provide unreliable and reliable results,
respectively.

As fixed calibration is a mature area of research, it is not surprising that our calibration and
plate reconstruction results compare but not outperform other results from literature.
However, our algorithms are based on the Bayesian formulation with simulated annealing,
which provides high flexibility in modeling the cameras (the prior model can be changed in
an easy way), and most importantly, it makes the step towards the far less mature area of
self-calibration very small.

3.7 Self-calibration
In self-calibration, the actual scene itself is used as calibration object instead of a special
object. Figure 3.12 illustrates the principle of self-calibration, using a simple cube as scene.
The calibration algorithm does not rely on the specific shape of the scene. First,
corresponding pixels between the left and right image of the scene are estimated, which is
discussed in Chapter 4 of this thesis for images of general scenes. The fact that the light rays
of corresponding pixels must intersect, even if we do not know exactly at which position in
space, provides a constraint on the camera parameters enabling their estimation. This

corresponds to minimizing the intersection error VP PSL SR to  for all triangulated

correspondences (see section 2.5).

All self-calibration approaches cannot recover the absolute scale of the scene, since no
reference object is present (as in fixed calibration ) that has units in meters. Only in special
cases absolute scale can be recovered, e.g. by using special stereo cameras [Zane96] and a
combination of fixed and self-calibration [Rede99d].

When lens distortion is not modeled (or not present), it can be proven that at most 7 camera
parameters can be measured using self-calibration [Arms96, Csur97, Luon93]. Any camera
model with more parameters results in uncomplete parameter estimation and thus can never
provide geometrically correct scene reconstructions. In the worst case a projective
reconstruction is the best we can obtain [Csur97], which yields distortions of both lengths
and angles.
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PSR

PSL

VP PSL SR to 

left image right image

σcor

ci

PPR

PPL

right image

left image

PPR from S

PPL from S

triangulation

imaging PS

Figure 3.12 Self calibration principle. Each corresponding pixel pair PPL, PPR is triangulated to yield
scene point PS. For each such pair, the two light rays must intersect, which provides a constraint on the
camera parameters enabling their estimation. Instead of actually minimizing the intersection error V in
3-D space, our algorithm projects PS back to the images and calculates a similar error in the images.

For successful calibration in our application, we thus either need additional constraints or
more information. Examples of extra constraints are fixing the CCD skew to zero and the
pixel aspect ratio to 1 [Arms96, Boug98, Poll98]. More information is often obtained by
taking more than two images into account, e.g.  three images from a trinocular camera
[Faug97, Fitz98], more than 3 images from a single camera [Jeba99] or two or more image
pairs from a stereo camera [Deve96, Faug92, Luon93, Zhan93, Ziss95]. Unfortunately for
this approach both the scene and the camera parameters must be static during the
recordings.

The 7-parameter proof is derived under the assumption of ideal lenses without distortion.
Any approach that first compensates for lens distortion and then performs self-calibration is
able to measure all the distortion parameters plus the 7 aforementioned parameters. We will
include lens distortion as an integral part of the self-calibration algorithm and show that this
enables the measurement of additional camera parameters. In [Rede98d, Rede99b] our first
results with this approach failed, due to an error in the implementation of the rotation
matrices (A.12).

We will now discuss the choice of what to minimize (2-D or 3-D errors as in the fixed
calibration case), the implementation in the Bayesian framework, the models used for the
cameras and the correspondences, and the search algorithm. In all steps we will make full
use of all results found for the fixed calibration scheme.
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3.7.1 Minimize 2-D or 3-D measure
In section 3.5.1 we argued that both in fixed and self-calibration schemes it is wise to
minimize errors in 2-D rather than 3-D errors. Figure 3.12 shows how we interpret the
triangulation error in 2-D. First we triangulate the corresponding points PPL and PPR to
construct the point PS. During the self-calibration we project the point PS back to the left
and right and left images to obtain PPL from S and PPR from S, respectively. The difference
between PPL and PPL from S (and the difference between PPR and PPR from S) is interpreted as an
error from the correspondence estimator. For this error we have used a Gaussian
probabilistic model with µ = 0 and σcor due to the correspondence estimator.

Intuitively, an option for a difference measure in 3-D space is to minimize the triangulation

intersection error
SRSL PPV  to

. However, in this case the algorithm will have a bias towards

small scene and will not pay attention to shape. If this is taken into account by making the
measure invariant to scale, the method will start to resemble the 2-D method.

3.7.2 Bayesian formulation
In the self-calibration scheme we model the following parameters as random variables:

 • Φ : all Ncam-model parameters for the stereo camera model. The values of Φ are denoted
by φ. The single parameters are φi.

• C : all Ncor estimated correspondences in the images. Correspondence estimators as
discussed in the next chapter supply the values c of C. A single correspondence is
denoted by ci = { ILxy

iPLP ; , IRxy
iPRP ; }.

Similar to the results found for the fixed calibration scheme in section 3.5.2, we obtain for
the MAP solution:

( ) ( )φ φ φ
φMAP Cp c p= arg max ,|Φ Φ (3.23)

Here pΦ is the prior camera model and pC |Φ is the model for the errors in the estimated
correspondences.

3.7.3 Prior camera model
We use the general prior camera model ( )pΦ φ from Table 3.4, which was used for fixed

calibration. However, we cannot measure any length in meters, but only in baselines as
discussed in section 2.4.7, and thus use µ = 1 and σ = 0 for the baseline b.
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3.7.4 Correspondence model
In the correspondence model ( )p cC| ,Φ φ , the differences between PPL and PPL from SR as well

as PPR and PPR from SL are related to the errors from the correspondence estimator. This is
similar to the fixed scheme in which ( )p mM | ,Φ φ is built from the differences between

detected markers m and predicted markers mpred.

The correspondence errors from the estimator are modeled as discussed in section 2.6.3,
that is, both left and right points of an exact corresponding pair are detoriated by zero mean
Gaussian noise with standard deviation σcor. Since we perform self-calibration after
correspondence estimation, we cannot use epipolar geometry (see Figure 3.1). Then, the
correspondence errors are isotropic in the xI and yI directions (see section 2.6.3). We then
obtain:

( )p c eC
cor

S

i

i

cor

| ,Φ φ
πσ

σ=
−

∏ 1

2 2

all correspondences
in the stereo pair

2 2 (3.24)
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which is very similar to (3.10) for fixed calibration.

3.7.5 Search algorithm and its evaluation
We use the same Simulated Annealing algorithm as in the fixed calibration scheme, see
section 3.5.6. We evaluate its convergence by A which is now defined by:

A
N N

S
N

S
cor params

i
i cor

i
i

2 1

4

1
=

−
≈∑ ∑

all
correspondences

all
correspondences

(3.26)

The A represents the total amount of errors that are attributed to the correspondence
estimator, i.e. that could not be explained by the estimated specific camera model. The
definition (3.26) follows the definition of A for fixed calibration (3.22). In self-calibration,
Nparams equals:

N N Nparams cam model cor= +− 3 (3.27)
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The 3Ncor equals the number of free parameters that the self-calibration procedure has when
producing Ncor triangulated scene points (each has an x, y and a z coordinate). The
simplification in (3.26) is only valid if Ncor >> Ncam-model.

We expect that A ≈ σcor. If the calculated A is about σcor, we assume that

 • the search algorithm has converged
 • the correspondence estimator works as expected
 • the camera model is appropriate

If A is too large, one of these is not true. In fixed calibration, A was also too large when the
calibration object differed from the object model. In self-calibration, this is not possible
since no object model is used. If cameras are calibrated with both methods and A is too
large in the fixed method but as expected with self-calibration, we know that the calibration
object differs from the object model. If A is smaller than expected, it must be due to a
difference between the correspondence estimation errors and its model. The algorithm may
work better than expected (lower σcor) or has errors different from the model (3.24) with
independent zero mean Gaussians.

3.8 Self-calibration experiments
We will perform the same experiments as defined in section 3.6 for the fixed calibration
scheme. We will use synthetic data and natural images. In both cases, our scene consists of
several views of the (synthetic or real) calibration plate. This allows us to use the marker
detection algorithm as correspondence estimator at this point, and thus σcor = σmrk. Although
we use the calibration object as scene, the self-calibration method does not use the
calibration object model.

We use exactly the same synthetic and real data as used for the fixed calibration scheme.
Also the prior camera model is the same, with the exception of the baseline, which is set to
1 in self-calibration. Other specific exceptions are mentioned below. The simulated
annealing algorithm was used without modification, working on a U function based on
(3.24) instead of (3.10). The settings were identical to the settings for fixed calibration
(Table 3.7) except for knoise, the strength of the random perturbation generator. This was set
to 0.1, instead of 10-3 for fixed calibration, which significantly increased the convergence
speed in our experiments.

The results are evaluated with the following methods:

 • Comparison of the remaining correspondence errors A with σcor (2-D domain).
 • Comparison of the scene reconstruction with a ground truth (in the 3-D domain). This

is possible only through the use of the calibration plate as scene.
 • Comparison of the estimated parameters with a ground truth. For this we either use the

true synthetic data or the parameters found by the fixed calibration scheme.
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All results will be compared with the results obtained with fixed calibration.

3.8.1 Synthetic calibration plate and images
Table 3.10 shows the results from the self-calibration experiment with a pinhole stereo
camera, similar to the fixed calibration experiment in Table 3.6. In all but one of the
experiments, the pixel aspect ratio was fixed to 1 to set Ncam-model to the theoretical
maximum of 7. In one experiment, the pixel ratios of both cameras were added to the
model, yielding Ncam-model > 7. According to the theory, in such a case reliable parameter
estimation is not possible in self-calibration.

We found that the SA algorithm always converged quickly to a low value of A. Compared
to the fixed calibration method, the run-times are smaller. Clearly, the fact that no plate
positions and orientations have to be estimated outweighs the fact that four light rays have
to be constructed instead of two in fixed calibration.

The value of A for the experiment with measured markers is much smaller than its value in
the case of fixed calibration. In the other experiments, the As are the same for fixed and
self-calibration. According to section 3.7.5, this can only be due to a difference between the
actual correspondence estimation (marker localization) errors and the model (3.24) that
assumes independent zero mean Gaussians. As found in section 3.4, the marker errors are
concentrated on the outer ring, highly non-uniformly distributed over all 48 markers on the
plate. If the errors in the outer ring are correlated between left and right views, this results in
a reconstructed marker in 3-D space (see Figure 3.12) that has slightly moved from its
correct position . In  the fixed scheme, this would be noticed directly, since the inner
markers are reconstructed well and both inner and outer markers must fit into the regular
grid on the plate. The self-calibration scheme has no knowledge of the grid of the plate,
which makes it insensitive for such left-right correlated errors on a few markers. Effectively,
the model (3.24) is valid for fixed calibration, and for self-calibration if only the inner
markers are used. We will use (3.24) also for self-calibration with all markers, since it is the
best quantitative model we have at this moment.

Similar to the fixed calibration results, the self-calibration algorithm finds now and then a
different solution that also explains the correspondences (markers in this case) with very
low A. We observed this effect using the exact, measured and noised markers (the Table
shows this effect for the true markers). In contrast to the fixed calibration scheme, we could
not prevent this by using 4 views of the calibration plate. The self-calibration scheme has no
knowledge of any calibration plate and, whatever the specific setup and number of views,
deals with all measured markers as if they originate truly from one compound object. Thus,
even with Ncam-model = 7, in our experiments, we were not able to provide reliable results
with self-calibration. If one of the focal lengths was fixed to the true value, the algorithm
always converged to the right solution.
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Parameters True

Estimated
with exact
markers
σmrk = 0
(≈0.001)

Estimated
with

measured
markers

σmrk = 0.01

measured
markers

σmrk = 0.01,
incl. pixel

aspect ratios

Estimated
with noised

markers
σmrk = 1

baseline b

x-rotation ϕSF
LFL x;

convergence  ϕSF
LFL y; ϕSF

LFR y;

z-rotation    ϕSF
LFL z; ϕSF

LFR z;

focal lengths OPFL
zLFL  OPFR

zLFR

pixel ratio sy;L         sy;R

0.8

0°

-45° 45°

0° 0°

1000   1000

1 1

1

0.00°

-40.7° 40.7°

0.00° 0.00°

859   859

1 1

1

0.00°

-44.8° 44.8°

0.00° 0.00°

994    994

1 1

1

0.00°

-45.6° 39.3°

0.00° 0.00°

1020   817

1.52   1.35

1

-0.04°

-35.7° 35.6°

0.13° 0.01°

714   712

1 1

SA alg. marker errors  A 0 0.0010 0.0011 0.0012 1.061

Scene Position

reconstruction Orientation

Scale

Deform

0 0     0

0° 0° 0°

1

0

.00 .00 -.187

.00° .00° .00°

1.617

8.8 mm

.00 .00 -.103

.00° .00° .00°

1.262

0.34 mm

.056 .00 -.147

.0° -3.6° .0°

1.604

1.9 cm

.00 .00 -.318

.0° .09° .04°

2.345

2.0 cm

Table 3.10 Self-calibration results with distortion-free cameras.

From the scene reconstruction results we observe that the scene shifts forwards and
backwards together with the scale difference, as discussed in section 2.6.4 (baseline
section). It can be seen that the scale difference is not only caused by the inability of self-
calibration to measure the baseline in meters (which yields a systematic scale difference of
1.25 in these experiments). Whenever a false solution is found that explains the observed
marker positions just as well as the true solution, it also produces an extra scale difference,
together with a larger reconstruction error. The deformation error is defined for the
reconstructed scene if this scene is scaled to the size of the true scene (this only plays a role
if the scale factor is different from 1).

The reconstruction results from the self-calibration method are about 5 times less accurate
than those from the fixed method. This cannot be due to the accuracy of the
correspondences (markers), since the same markers are used for triangulation in both
experiments. Thus, the parameters obtained in self-calibration are less accurate than in fixed
calibration. As expected, if we include the pixel aspect ratios in self-calibration
(Ncam-model > 7), the errors on the parameters and the scene reconstruction increase
drastically.

Table 3.11 shows the self-calibration results with the general camera model (compare with
fixed calibration Table 3.8), with Ncam-model = 23. The calibration has been performed with
the true and measured markers. From all our experiments, about one out of three showed
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convergence to A in the order of σcor. The table shows two representative experiments from
this set. The other experiments converged to an A one or more orders higher than σcor.

Parameters True
Estimated with
exact markers,

σcor = 0 (≈0.001)

Estimated with
measured markers

σcor = 0.01

baseline b

x-rotation ϕSF
LFL x;

convergence  ϕSF
LFL y; ϕSF

LFR y;

z-rotation  ϕSF
LFL z; ϕSF

LFR z;

focal lengths OPFL
zLFL  OPFR

zLFR

pixel ratio sy;L        sy;R

0.8

1°

-45° 45°

5° 5°

800     900

1.1     0.9

1

2.529°

-41.40° 36.28°

4.30° 5.02°

677    711

1.088    0.897

1

1.409°

-44.37° 41.56°

4.90° 5.06°

788    820

1.123    0.893

Lens distortion K3;L K3;R

 K5;L K5;R

CCD skew θL θR

mispositioning   OPFL
xyLFL

 OPFR
xyLFR

misorientation    ϕLFL
PFL xy;

ϕLFR
PFR xy;

1 -1

0.5     -0.5

0.1° -0.2°

10       10

5 -5

-4° -5°

5° 4°

0.72     -0.65

0.24      -0.14

0.01° 0.37°

14.67      9.15

-7.15     -3.04

-3.67° -2.00°

6.55° 8.58°

0.97    -0.84

0.48    -0.34

0.01° 0.01°

8.50    10.29

1.28    -4.39

-3.67° -2.00°

6.20° 5.76°

SA alg. marker errors  A 0 0.0053 0.0053

Scene Translation

reconstruction Orientation

Scale

Deform

0 0      0

0° 0° 0°

1

0

.051   .002  -.242

.24° -3.77° .05°

1.815

1.3 cm

.028   .002  -.139

.19° -1.62° .01°

1.378

4.0 mm

Table 3.11 Self-calibration results with the general camera model.

Comparing these results with the self-calibration result in Table 3.10 (distortion-less
cameras and 9-parameter model), we see a significant improvement. This clearly shows that
the theoretical 7-parameter restriction for pinhole cameras does not apply in the same way
to cameras with lens distortion. Comparing the results with Table 3.8 for fixed calibration,
we notice that both fixed and self-calibration estimate all parameters with highly varying
accuracy, and that fixed calibration provides slightly better results.

Unfortunately, we see that the false solutions as encountered in the 3-plate fixed calibrations
and self-calibrations above are still present. The experiment with the exact markers shows
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reconstruction errors of 1.3 cm. As the dimensions of the scene are about 35x35x35 cm (see
section 3.6.1), this still leads to a relative accuracy in the order of 10-1 to 10-2.

3.8.2 Real calibration plate and images
Table 3.12 shows the self-calibration results with real cameras, obtained from the same data
used for the fixed calibration experiment in Table 3.9. From the fact that A in self-
calibration is as expected, while A in the fixed method is too large, we conclude according
to section 3.7.5 that the inaccuracies in both our A1 and A4 plate models limit the accuracy
of the fixed calibration scheme.

Parameters
Slightly converging

setup, A1 plate
More convergent setup

A4 plate

baseline b

x-rotation ϕSF
LFL x;

convergence   ϕSF
LFL y; ϕSF

LFR y;

z-rotation  ϕSF
LFL z; ϕSF

LFR z;

focal lengths  OPFL
zLFL  OPFR

zLFR

pixel ratio sy;L       sy;R

1

-0.004°

-8.24° 4.23°

-0.08° 0.28°

977      972

1.033      1.030

1

-0.219°

-24.09° 22.34°

-1.02° 0.75°

1435      1440

1.350     1.368

Lens distortion K3;L K3;R

 K5;L K5;R

mispositioning   OPFL
xyLFL

 OPFR
xyLFR

-0.24        -0.22

0.40         0.27

-14.92       -0.42

4.67         1.27

-0.36       -0.35

1.04         1.06

2.10        4.23

0.00      11.61

SA alg. marker errors  A 0.0330 0.0167

Scene Position

reconstruction Orientation

Scale

Deform

.073     -.082   -1.86

1.08° -.58° .06°

2.088

2.4 cm

.016    .013   -.523

-.14° 1.47° .36°

1.146

5.0 cm

Table 3.12 Self-calibration results with real cameras.

Further, we observe that the parameters in Table 3.12 do not resemble those of Table 3.9
very well. In this sense, the cameras have not been calibrated well. Scene reconstruction
errors were calculated using the compound scene reconstruction results from fixed
calibration as ground truth data. Then, the relative errors of the self-calibration scheme with
respect to the fixed scheme are about 10-2 (A1 experiment, 2.4 cm error in a scene of
1x1.5x10 meter) and 10-1 (A4 experiment, 5.0 cm in a scene of 0.3x0.45x1 meter).
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3.8.3 Discussion
We will compare our results with other results from literature. Most self-calibration
approaches use more information than our scheme (more than two images, more than two
cameras, more prior information), and reconstruction errors are seldomly given (due to the
absence of a well-defined length unit). Therefore we selected to review a few more or less
comparable results.

In [Pede97a] and [Pede99] an approach is adopted that stands midway between a fixed and
a self-calibration method. A rough calibration object model is used (actual self-calibration
does not use any object model at all). Pixel accuracies are reported of A ≈ 0.2 and
reconstruction accuracies of about 0.2 to 0.4 mm (absolute scale can be recovered by this
method). The latter is obtained for real images, and refers to the reconstruction of the
calibration object. As shown by our experiments with synthetic images, this accuracy may
not hold for the compound object or scene. In [Zhan93], two image pairs are used (four
images) and a camera model without lens distortion. Reconstruction results are reported of
10-2, but their approach suffered from convergence (stability) problems. In [Arms96,
Azar95, Poll98] some comparable results are reported for the structure-from-motion
applications, where a single camera takes N images from a static scene at different angles.
In these approaches, no lens distortion is considered. In [Arms96], an image sequence of 24
frames is used in which 128 scene points are tracked. Pixel errors (A) of about 0.1 pixel are
reported, and relative accuracies for focal lengths and pixel aspect ratios of about 0.1%, and
for skew and CCD mispositioning of about 10-25%. In [Azar95], 20 to 40 images are used
and 5% errors in the focal length are reported. In [Poll98] a number of images in the order
of 10 are used to reconstruct real scenes. Prior knowledge of e.g. the pixel aspect ratio is
required. Angles between parallel and orthogonal lines in the scene are estimated with
accuracies of about 1°, which cannot be compared easily with our results. Relative
accuracies for lengths are given in the order of 10-1 to 10-2. This is comparable to our results
obtained with only a single stereo image pair and less prior camera knowledge, but it must
be noted that their scene is more complex than ours.

From all the self-calibration experiments we conclude that:

 • The theoretical restriction Ncam-model ≤ 7 does not hold for self-calibration approaches
that take into account lens distortion.

 • Self-calibration of stereo cameras in a typical setup may result in a solution that fully
explains the observed correspondences, but does not reconstruct the scene well. This
holds even with correspondences up to 0.001 pixels. This was found both for cameras
without lens distortion and a camera model with Ncam-model = 7, as well as for cameras
with lens distortion and Ncam-model > 7, both using synthetic and real images.

 • In our experiments, we observed relative accuracies for the scene reconstruction that
range from 10-3 (synthetic scenes/images, pinhole camera model) to 10-2 and as low as
10-1 (real scenes/images, general camera model).

 • Our self-calibration approach obtains results similar to other approaches in literature.
However, we use the minimum of two images and little prior camera knowledge. Other
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approaches use a higher number of images and cameras, and need more prior
knowledge of the cameras and/or the scene.

3.9 Conclusions
We examined the calibration of a stereo camera. Two methods were investigated; fixed
calibration and self-calibration. Fixed calibration has been used successfully for many years.
It involves placing a special calibration object in front of the cameras and recording it,
which requires the object and user interaction. Current research is focusing more and more
on self-calibration that uses the actual scene as object, enabling fully automatic calibration.

Our contributions are as follows. First, we used the Bayesian probability framework to
allow for a unified approach for both fixed and self-calibration methods. Further, we
applied simulated annealing as general search algorithm in both calibration methods. With
this algorithm we circumvent much analytic work, such as the computation of derivatives in
gradient-based algorithms, or an initial approximation of the solution. The Bayesian
approach together with simulated annealing provides high flexibility in modeling the
cameras. Changes can be made directly via a prior camera model (fixing parameters to
prescribed or hand-measured values), while the SA algorithm does not need any adaptation.
Simulated annealing is computationally intensive; a single calibration took up to 30 minutes
on a modern computer system. Future research may focus on speeding up this algorithm, the
use of other algorithms or analytic approaches that provide (part of) direct solutions.

For the fixed calibration method, we followed an approach used in many current schemes,
in which a virtual calibration object is composed by several views of a single planar
calibration plate. We designed a new scheme for detecting markers on such plates within the
images. The scheme is fully automatic and very robust. In synthetic images including noise
and other practical image detoriations, we obtained positional accuracies of 0.01 pixel. In
real images the results were experimentally shown to be better than 0.1 pixel. These results
outperform most of the current algorithms for marker detection. Detailed research directions
for further improvement have been given. The most prominent is to circumvent the errors in
the markers at the perimeter of the plate, which are much larger than the errors in the other
markers.

Our results with fixed calibration showed that real calibration plates could be reconstructed
with relative accuracies up to 10-4. Using synthetic data where the ground truth was
available, we observed that the compound object, consisting of several views of the plate,
could not always be reconstructed reliably even if marker positions were accurate up to
0.001 pixel. This also holds for the reconstruction of the actual scene of interest. The effect
cannot be noticed in experiments with real calibration plates and images, and thus may lead
to pseudo-accurate reconstructions. When we chose a set of 4 views of the calibration plate
in a specific non-parallel orientations, we found that the reconstructions are always reliable.
A direction for future research is the thorough investigation of the requirements on the setup
for reliable calibrations.
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In self-calibration, we considered the most difficult case that estimates all camera
parameters using only a single image pair. For camera models without lens distortion, a
theoretical proof exists saying that at most 7 parameters can be measured. We provided
experimental evidence that this proof does not apply to cameras with lens distortion. Using
synthetic data, we could measure more than seven parameters, with varying accuracy. A
direction for research would be to prove this conjecture theoretically. Unfortunately, the
non-linear aspects of lens distortion obscure such an analysis. Even projective geometry, a
powerful and often used mathematical tool in self-calibration of lens-distortion-free
cameras, cannot integrate lens distortion easily.

In our experiments, the unreliability encountered in fixed calibration appeared similarly in
self-calibration, both in the cases with and without lens distortion (even with the theoretical
maximum of 7 parameters). The solution in fixed calibration, the specific setup of a number
of calibration plates, cannot be used by the self-calibration method since it does not use the
calibration plate model. We did not find any solution for this problem. Still, even in these
situations, we could calibrate the cameras such that scenes could be reconstructed with
relative accuracies of about 10-1 to 10-2. These results are comparable to other results found
in literature, while those approaches use more than two images and more prior knowledge
about the cameras and the scene. A heading for future research is how to ensure the
reliability of self-calibration. Combining our self-calibration approach with multi-camera
systems may provide a solution.



Chapter 4 

Correspondence estimation

4.1 Introduction
The goal of this chapter is to derive a correspondence estimator that is especially suited for
our 3-D scene acquisition application. Figure 4.1 shows the place of correspondence
estimation (CE) in the scene acquisition process. The CE step is the most complex part of
the process of 3-D scene acquisition from stereo images.

Scene

bα

Stereo
camera

Images

General stereo
camera model { },....,bα=Θ

Camera
calibration

$Θ

Specific
camera model

Triangulation

Acquired
Scene

Self
calibration

Epipolar
constraint

Correspondence
estimation

Figure 4.1 The scene acquisition process. This chapter deals with the correspondence estimation
algorithm (shown dotted).

In literature, the topic of correspondence estimation has received already much attention
because it plays a vital role in many other applications too. These include video coding,
frame rate conversion, multi-viewpoint image generation, camera calibration and structure
from motion. The requirements on the correspondences differs strongly per application, see
Figure 4.2.
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A Image Pair B

Correspondence

Photometric Geometric

- MPEG-2 video coding - Frame rate
 conversion
- Multi-viewpoint
 interpolation

- MPEG-4 video coding
- Multi-viewpoint extrapolation
- Camera calibration
- Structure from motion
- 3-D from stereo

Figure 4.2 Applications of correspondence estimation. Some require photometric correspondences,
while the majority of modern applications require geometric correspondences.

In video coding such as MPEG-2, correspondences are motion vectors from one image to
the next in a sequence. The luminance of each pixel in an image is copied from or predicted
by the previous image along a motion vector. Together the vectors are called the motion
vector field, or the correspondence field. In the coding application, the correspondences
have a photometric meaning. In many other applications, correspondences are used to
extract 3-D information of scene points, giving them a geometric meaning. Such
applications are camera calibration (see Chapters 2 and 3), structure from motion [Azar95,
Matt89, Poll98], multi-viewpoint extrapolation [Rede97b] and 3-D from stereo [Rede99c].
Frame-rate conversion [Haan92] and multi-viewpoint image interpolation [Ohm98, Tsen95]
lie more or less in between the photometric and geometric extremes.

For our 3-D scene acquisition application, we require high-resolution (pixel-dense) and
high-accuracy geometric correspondence fields. Further, these fields must be calculated in
real-time for dynamic scenes. This is in contrast with e.g. camera calibration, which can be
performed once if the camera setup is static. Thus, for any real-time implementation in an
actual 3-D communication system, we require that the computational load of the
correspondence estimation is sufficiently low. At this moment, estimators do not exist that
fulfil both requirements. This is due to the following reasons.

The high-resolution and high-accuracy estimation of geometric correspondences requires
complex prior models for the dense field. These reflect the prior model of the scene to be
acquired. Basically a smoothness constraint is imposed on the field, or equivalently, the
scene. Such a model can only be designed on a heuristic basis, which is a reason for the
large diversity in CE algorithms.
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As a model does not have causal properties (along the image axes) in general, the estimation
of all correspondences should in principle be done at the same time. If the correspondences
for the entire image are estimated one by one, a causality constraint is implicitly imposed on
the dependencies between the correspondences in the model. This may enable a fast
implementation, but it restricts the accuracy.

The simultaneous and accurate estimation of all geometric correspondences in a pixel-dense
field is a challenge for two reasons [Konr92]: First, the dimensionality of the solution space
is extremely large: in the order of 106, the number of pixels in the image. This is
computationally very demanding and may result in hours of computing per stereo image
pair. Even with the continuing increase in computational power, new algorithms must be
found in order to allow for real-time implementations in the near future.

Secondly, the estimation of a geometric correspondence field on the basis of photometric
luminance fields of an image pair is not straightforward. It is completely based on heuristics
as mentioned. The most commonly used heuristic is the so-called Constant Image
Brightness (CIB) assumption [Horn86]. It states that a corresponding pixel pair has equal
luminance. In Figure 4.3, two contours of equal luminance are depicted in an image pair. If
we take a point PA on the contour in image A, the question is to which point in image B it
corresponds.

Figure 4.3 Photometric similarity is insufficient in geometric correspondence estimation.

For a photometric correspondence, all points on the contour in B would do. But there is
only one point that corresponds geometrically, and we cannot be sure whether it lies on the
contour in B, or not. If it does not, this can be due to, for example, camera noise, specular
reflectivity of scene surfaces or to the use of a stereo camera with unbalanced photometric
properties. Thus, we cannot use the CIB constraint alone to estimate a dense field of
geometric correspondences. For this reason correspondence estimation is often called an ill-
posed problem [Bert88]. Additional geometric constraints are needed, together with an
appropriate photometric model that accounts for deviations from the CIB model.

In order to meet our goal in this challenging field, this chapter contains two parts. In the
first part from sections 4.2 to 4.8, we give a thorough overview of classic and modern
techniques for correspondence estimation. We will evaluate these using the requirements of
our application. The overview is based on [Rede99a]. In the second part in section 4.9, we
will use the review for the design of two new estimators for our application. One is suited
for calibrated cameras, that uses the epipolar constraint (see Appendix B). The second
algorithm is suited for uncalibrated cameras, that works autonomously and can be used for
self-calibration purposes. Figure 4.1 indicates these two options.
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First we will formally define geometric correspondence and investigate the different types
of image pairs in section 4.2. Then in section 4.3 we look briefly at the classic approaches
to correspondence estimation and at their feasibility and flaws for simultaneous dense
estimation. In section 4.4 we will focus on the Bayesian approach, which is very suitable for
this task and for which several promising algorithms have recently been developed. This
approach utilizes four distinct steps, which are treated in sections 4.5 to 4.8. In section 4.9
the two new estimators are proposed. Finally, section 4.10 concludes the chapter.

4.2 Geometric correspondence in image pairs
We will first formally define geometric correspondence in section 4.2.1. Up to this point,
the image pairs in all applications can be categorized in three types: spatial, parallel and
temporal image pairs. In section 4.2.2 we will discuss spatial image pairs, which are
provided by stereo cameras, as in our application. Section 4.2.3 describes parallel image
pairs, which are a special type of spatial image pairs. Section 4.2.4 deals with temporal
image pairs that originate from a single camera taking multiple images in a sequence.
Although this is not directly related to our application, it is the application for which the
majority of CE algorithms have been derived.

4.2.1 Definition of geometric correspondence
If the luminance of a point PA in image A and a point PB in image B are defined by the same
scene point, we say that PA and PB correspond (see Figure 4.4). From this point on, we will
mean geometric correspondence whenever we mention correspondence, unless stated
otherwise.

PA
PB

IA IB

Figure 4.4 Correspondence between PA and PB.

Due to object transparency and camera defocus, the luminance of one point in an image may
be defined by several scene points at the same time. This holds for both images, giving rise
to multiple (many-to-many) correspondences (see Figure 4.5).

IA IB

Figure 4.5 Multiple correspondences.
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We have not discovered in literature any attempt to take multiple correspondences into
account in the simultaneous estimation of dense correspondence fields. Therefore, from this
point on, we will assume that all scene objects are opaque (not transparent).

Opaque objects that move in front of each other cause occlusion in images. It is possible
that a scene point P is visible in image A as PA, while in image B it is occluded by another
scene point, Q, visible in B as QB. We define that there is a pseudo-correspondence from PA

to QB (see Figure 4.6). The point PA is called an occlusion point.

IA IB

PA QB

Figure 4.6 Pseudo-correspondence from occlusion point PA to some point QB.

Pseudo-correspondences enhance the quality of images generated in multi-viewpoint and
frame-rate conversion applications. They provide information about the position of point P
in all intermediate images in which P is visible. In the applications 3-D from stereo and
structure from motion, the models obtained are more complete as the pseudo-
correspondences can be used to extract additional 3-D scene points. It is expected, however,
that pseudo-correspondences can be obtained less accurately than real correspondences,
since no photometric constraints are available for their estimation. Geometric constraints are
the only clue. We expect e.g. that the pseudo-correspondence originating at PA is similar to
real correspondences obtained in the vicinity of PA.

4.2.2 Spatial image pairs
Spatial image pairs are obtained when a scene is recorded by two cameras, A and B, which
are located at different positions (see Figure 4.7). This setup is used in our application
(where a sequence of such pairs is recorded).

camera A

camera B

scene

baseline

Figure 4.7 A stereo camera provides a spatial image pair.

For spatial image pairs, epipolar geometry provides a very powerful restriction on
correspondences that has general validity, see Appendix B. If two points from an image pair
correspond, they should lie on conjugate epipolar lines. This is called the epipolar
constraint. It reduces the set of possible correspondence candidates for a point in image A
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from all points in image B to only those on the conjugated epipolar line in B (see Figure
4.8).

AA BC

Figure 4.8 Correspondence is restricted to conjugate epipolar lines.

This restriction on the correspondences reduces the complexity of estimation by an order of
magnitude, since every pixel in image A now only has a 1-dimensional set of pixels in image
B as potential correspondences, in stead of a 2-dimensional set. If the epipolar constraint is
used, correspondence estimation is called disparity estimation. Epipolar geometry can only
be used if the cameras are already calibrated (see Figure 4.1).

The distance between the cameras is called the baseline. The larger the baseline, the more
accurate the triangulation given the finite accuracy of the estimated correspondences, see
Chapter 2. However, large baselines also yield large differences in the image pair (see
Figure 4.9), which is a challenge for the estimation algorithms.

Figure 4.9 Small (top) and large (bottom) baseline.

4.2.3 Parallel image pairs
A special type of spatial image pairs arises if the cameras are in the parallel setup discussed
in section 2.4.9. This setup requires that two identical pinhole cameras (no lens distortion or
CCD misplacement) are placed with equal orientations, while their positions differ only in
the direction of the scan lines. In this way a parallel image pair is obtained, in which
corresponding pixel pairs lie on equal scan lines (see Figure 4.10).

In a parallel image pair the scan lines coincide with the epipolar lines, see Appendix B. The
epipolar constraint is then applied by simply removing the y components from a
correspondence field, which is then called a disparity field. Since the search for
correspondences is now restrained to a horizontal range only, disparity estimation is much
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less complex than correspondence estimation. Disparity estimation algorithms for parallel
image pairs are widely available [Cox96, Fran96, Inti94, Rede98a, Tsen95, Woo96].

image
plane A

image
plane B

camera A
camera B pure translation

Figure 4.10 A parallel camera setup provides a parallel image pair in which corresponding pixel pairs
always share the same scan line. Correspondence estimation is reduced to the much less complex
disparity estimation, requiring only a horizontal search.

When cameras providing a spatial image pair are calibrated, the A and B images can be
rectified as discussed in section 2.4.9. The result is a parallel image pair A’, B’ in which
disparity can be estimated by means of algorithms for parallel pairs.

4.2.4 Temporal image pairs
Temporal image pairs are obtained by recording a scene by a single camera that takes a shot
at two different time instants, tA and tB (see Figure 4.11).

camera A & B
time instants tA , tB

scene

Figure 4.11 A single camera provides a temporal image pair.

The correspondences are related to the motion of scene objects. Correspondence estimation
in temporal image pairs is therefore called motion estimation [Chan94, Konr92, Stil97].

For scenes with several rigid objects moving independently, temporal and spatial image
pairs can be converted into one another, on an object-by-object basis. This enables the use
of the strong epipolar constraint also in temporal image pairs [Xu96].

Figure 4.12 shows a scene with a number of rigid objects moving differently, recorded by a
single camera. Figure 4.13 shows the circular object from the scene, recorded by two virtual
spatial cameras. The resultant temporal and spatial image pairs are the same as far as the
part of the circular object is concerned. The difference in the positions and orientations of
the virtual A’ and B’ cameras relate to the translation and rotation of the circular object.
Obviously, the epipolar constraint can be applied on the spatial image pair in Figure 4.13.
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As the temporal pair is the same within the circular object, the exact same constraint holds.
Figure 4.12 shows the epipolar geometry for all objects.

A B

TA , TB

Figure 4.12 A camera records a temporal image pair from a scene with several rigid objects moving
independently. Each of the objects has its own epipolar geometry.

A’
B’

A’ B’

Figure 4.13 Spatial construction of one rigid object, selected from a temporal image pair.

In structure from motion applications, the 3-D triangulation of an object can be done in the
same way as in our 3-D from stereo application, with one exception. The two virtual spatial
cameras cannot be calibrated off line by fixed calibration methods. Self-calibration
techniques have to be used on the basis of the estimated correspondence field. If the scene
consists of only one object, the spatial and temporal image pairs are the same, which is used
in [Rede98d, Poll98].

4.3 Classic correspondence estimation methods
We will briefly discuss the classic approaches to correspondence estimation: feature
detection and matching, block matching, pel-recursive and optical-flow techniques. For
more details we refer the reader to the excellent overview in [Teka95a].

4.3.1 Feature-based algorithms
Feature-based algorithms [Barn80, Liu93] first extract predefined features, and then match
these (see Figure 4.14). The separation of detection and matching is a restriction on the
quality that can be obtained.

The definition of features is not easy. The most well-known and general feature is an edge,
of which definition and estimation has been investigated over long periods [Boye94,
Canny86]. This approach yields a sparse correspondence field.
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detection

matching

IA IB

Figure 4.14 Feature detection and matching.

4.3.2 Block-matching algorithms
In block matching, rectangular blocks of pixels are matched [Acca95, Hend96] (see Figure
4.15). For each block in image B, a block is sought in image A which most resembles the
block in B according to some criterion. A dense field can be obtained by means of
interpolation or the use of overlapping blocks.

IA

IB

Figure 4.15 Block matching.

During estimation, a single correspondence vector is used for all pixels within one block.
Since the vector only models translation, this approach does not work well for rotated and
skewed objects in an image pair.

For large textured areas undergoing relatively uniform motion, large blocks enable high-
accuracy estimation of correspondences. The uniform motion restriction, however, limits
the resolution obtained. To some extent, this can be overcome by adapting the block size to
the image content [Kana94].

4.3.3 Pel-recursive algorithms
These algorithms [Biem87, Börö91] have been developed for image-sequence coding. They
obtain a dense field by scanning, i.e. they start the estimation at the upper-left pixel and end
at the bottom-right pixel (see Figure 4.16).

First, the luminance of pixel x in image B is predicted from image A by means of the
correspondence vector found at the previous pixel in B (pixel 6 in Figure 4.16). Then a
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group of N pixels (here N = 7) is matched to image A. The group has a ‘causal’ shape in the
sense that it contains only pixels with known luminance in B. In the pel-recursive approach
an analytical expression is used to obtain the new vector on the basis of the previous one. It
is assumed that the previous vector is a good estimate of the new vector and thus, only small
changes are allowed between two vectors.

x
1 2 3 4
5 6 IA

IB

Figure 4.16 Pel-recursive technique.

The regular structure and causality of block matching and pel-recursive techniques make it
possible to implement them efficiently in hardware [Hend96, Pano98a]. However, the
causality restricts the quality of the correspondences obtained.

4.3.4 Optical-flow algorithms
This method is the first approach to the simultaneous estimation of a dense correspondence
field [Horn86]. The method uses the following relation between photometric
correspondence vectors with components (Cx,Cy), and the spatial and temporal derivatives
of luminance in an image sequence:

0),,( =






 +⋅+⋅ tyxI
ty

C
x

C yx ∂
∂

∂
∂

∂
∂ (4.1)

An additional regularization term biases the solution towards a globally smooth
correspondence field [Horn86, Tsai97]. Discontinuity fields have been incorporated to
avoid oversmoothing at object boundaries [Heit93].

The drawback of this approach is that the luminance derivatives are approximated
numerically. This requires local linearity of luminance in both spatial and temporal
directions. In image sequences with large motion (fast moving objects) the local linearity is
violated. In stereo applications, the temporal axis is replaced by a camera position axis. For
a camera baseline of any reasonable size, the position linearity is violated.

4.4 Bayesian correspondence estimation
More recent approaches to correspondence estimation are the Bayesian methods, which are
applied both to temporal image pairs [Chan94, Konr92, Stil97, Teka95b, Zhan93] and to
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spatial pairs [Cox96, Rede98d, Woo96]. In this approach the simultaneous estimation of
dense correspondence fields is possible. The luminance derivatives in the optical flow
method are avoided. Further, the estimation of other information besides correspondences
(e.g. object segmentation) can be incorporated.

In the Bayesian approach or framework we distinguish four steps, depicted in Figure 4.17.

Step 1
Definition of all fields

Step 2
Modeling of relation between all fields

with a joint probability function

Step 3
Definition of the best solution 

Step 4
Formulation of a search algorithm

that computes the solution 

Figure 4.17 The Bayesian framework.

The separation of problem statement in the first three steps and the derivation of a search
algorithm in step 4 [Drie92] increases the portability and adaptability of algorithms among
different applications and different designers.

In the first step, we define the input images IA and IB and all output fields {F1, F2, ...} to be
estimated. The output fields represent correspondence, occlusion and possibly discontinuity
and segmentation fields. In step 2 the relations between all these fields are modeled with a
joint probability function in F = {F1, F2, ...}, conditioned by the observed image pair iA, iB:

( )p f i iF I I A BA B| , , , (4.2)

This is a density in the continuous fields in F and a mass function in the discrete fields. In
the remainder of the chapter we will not refer to this explicitly. The design of the joint
model is usually decomposed by means of the Bayes rule, which accounts for the name of
these approaches:

p p p pF F F I I F F F I I F F I I F I IA B A B A B A B1 2 3 3 1 2 2 1 1, , | , | , , , | , , | ,= ⋅ (4.3)
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In the third step the best solution fSOL is defined by a criterion on the probability function,
such as the Maximum A Posteriori (MAP) criterion. In the fourth and final step a search
algorithm is formulated that computes the defined solution or a relevant approximation.

We will now focus on each of the four steps in the Bayesian framework.

4.5 Dense-field representations
For the correspondences and occlusions defined in section 4.2, several dense-field
representations C and O have been developed. For segmentation purposes, additional edge-
based segmentation fields S and region-based fields R have been proposed. Table 4.1 shows
a list of fields used by several authors in their and our notation. We will now have a close
look at each of these fields in sections 4.5.1 and 4.5.2. In section 4.5.3 we will discuss some
additional fields that are rare or have not been used at all up to now.

IA IB CA OA SCA RA

[Konr92] Konrad & Dubois ’92 gt- gt+ Dt Lt

[Chan94] Chang et al. ’94 g g’ u,v x

[Teka95b] Tekalp ’95 gk gk-1 d O l

[Woo96] Woo & Ortega ’96 Fl Fr D Φ
[Stil97] Stiller ’97 gt gt+1 dt see text lt

Table 4.1 Fields for luminance, correspondence, occlusion, discontinuity and segmentation.

4.5.1 Correspondence and occlusion fields
The occlusion points, the real and the pseudo-correspondences can be represented by
several pixel-dense fields. They are all defined on the pixel lattice ΛP (see Figure 4.18). The
lattices of the images IA and IB are denoted by ΛPA and ΛPB, respectively.

pixel

entry of ΛP

Figure 4.18 The pixel lattice ΛP.

The correspondence fields C that are mostly used are defined on one of the images lattices
ΛPA, ΛPB [Chan94, Rede98d, Stil97, Teka95b, Woo96, Zhan93]. The CA field is depicted in
Figure 4.19. Each entry CA(PA) contains a vector with its starting point at the entry PA on the
lattice ΛPA. For pixel-accurate correspondences, the endpoint of the vector lies on the lattice
ΛPB. For subpixel accuracy, the vectors end on the continuous domain Λ*

PB.
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CA

Λ PA

Λ PB
*

Figure 4.19 The CA correspondence field.

Most applications benefit from subpixel accuracy, which is reflected in the number of
subpixel estimation algorithms that have been developed [Chan94, Stil97, Teka95b,
Woo96, Zhan93]. For subpixel accuracy, the luminance of the images has to be interpolated
to the continuous domain Λ*

P. In [Konr92] it is found experimentally that the specific
choice of the interpolation filter does not have much influence on the estimated
correspondences.

If (xA,yA) and (xB,yB) are the coordinates of a corresponding pixel pair, the value of the
correspondence field CA is:
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The value represents the 2-D (vector) displacement of the projection of a scene point
between image A and image B. Depending on whether the estimation is performed with
pixel or subpixel accuracy, the components of C are integer or real valued. For parallel
image pairs, the y component will always be zero and thus does not have to be included.
The correspondence vector fields CA and CB then reduce to the scalar disparity fields DA and
DB.

The CA field can both represent real correspondences between PA and PB and pseudo
correspondences from PA to QB. In the latter case PA is an occlusion point. The presence of
occlusion points can be represented by the occlusion field OA:
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Figure 4.20 shows the binary occlusion fields OA and OB.

When no occlusions are taken into account [Konr92], the CA field suffices in the modeling
process since it is able to represent all real correspondences. If occlusions are taken into
account but no pseudo-correspondences are estimated, the CA field contains all real
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correspondences and a number of undefined vectors [Teka95b]. Only in [Stil97], all real
and pseudo-correspondences from A to B, are estimated, making full use of CA.

IA IB

O = 1

OA OB

Figure 4.20 The occlusion fields OA and OB.

The introduction of both CA and CB fields simultaneously enables the estimation of all
pseudo-correspondences. This is useful in several applications as discussed in the definition
of pseudo-correspondence. Previously, both fields have been estimated separately to
remove outliers in real correspondences [Ohm98, Pano98a]. At this point, no attempt has
been made yet to estimate both simultaneously.

For parallel image pairs, all real correspondences and both occlusion fields OA and OB can
be represented by one field, the so-called chain map [Rede97d]. The chain map is
applicable if pixel accuracy is used and an additional ordering constraint, discussed in
section 4.6.6, holds [Cox96, Fran96, Rede98a, Tsen95]. The chain map itself will be
discussed more thoroughly in Chapter 6.

The CM field used in [Rede97b, Rede98a, Rede99c] is similar to the CA field, but it is
defined on a different domain: ΛPM. It is the pixel grid of a virtual image centered between
image A and image B (see Figure 4.21). In [Konr92] a more general case is considered
where M is placed at an arbitrary position in between A and B.

CM

CM

Λ PM

Λ PB
*

Λ PA
*

Figure 4.21 The CM correspondence field.

The value of the CM field is defined similar to (4.4):
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The CM field is attractive because of its symmetry in the A and B images. In parallel image
pairs, we have:

BAM yyy == (4.8)

and the y component of the field vanishes. Then CM reduces to the scalar field DM:

( ) ( )ABMMM xxyxD −= 2
1, (4.9)

According to (2.37) in section 2.4.9, we also find DM > 0. This field is particularly
interesting due to the simplicity of the triangulation procedure given by (2.49):
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Here b, f and sx, sy are the parallel camera parameters as outlined in section 2.4.9 (camera
baseline, focal length and pixel size respectively), while Nx, Ny is the image size.

The CM and DM fields do not allow for an easy incorporation of asymmetric phenomena,
such as occlusions and pseudo-correspondences. The field can be used in applications
where these phenomena do not play an important role, for example in 3-D face model
acquisition from stereo images [Rede99c] and for 3-D videoconferencing (Chapter 6).

In some cases the CM field cannot represent the real correspondences. A worst-case example
is when image B is an 180° rotated version of image A. Then all vectors intersect in the
center of ΛPM and CM can only retain one of them. For the DM disparity field for parallel
image pairs, such an image rotation cannot occur by definition. However, a similar
intersection of two (or more) correspondences on ΛPM is possible. This requires that two
correspondences on the same scanline (equal yM) result in equal xM via (4.7).

We can be sure to avoid this situation by the so-called ordering constraint. This means that
all scene points must appear in the A and B images in the same horizontal order. For two
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scene points P1 and P2 that both project to scan line yM, this means that the interdistance of
their projections in the A image, ∆xA, has the same sign as their interdistance in the right
image ∆xB. If this is applied to (4.7) and (4.9) we obtain:

1≤
M

M

x

D

∂
∂ (4.11)

Often the ordering constraint is already incorporated in the disparity estimation algorithm,
since it enables efficient search algorithms, see section 4.8. The ordering constraint is
further examined in section 4.6.6.

The DM field will be used in section 4.9 and in Chapter 6.

4.5.2 Segmentation and correspondence discontinuity fields
Some approaches in correspondence estimation do not model discontinuities [Horn86,
Konr92 (MEC algorithm)]. Then, high-quality correspondence estimates are possible if the
scene does not contain more than one object of interest, such as face acquisition from stereo
[Rede99c].

Segmentation and correspondence discontinuities need to be introduced for image pairs
with multiple objects. This has led to the introduction of correspondence discontinuity fields
SC, often called line fields [Konr92, Teka95b, Zhan93], and object label fields R [Chan94,
Stil97].

Figure 4.22 illustrates the discontinuities SC in the correspondence fields C in case of a
simple scene with two objects in front of a background.

IA IB

SCA SCB

Figure 4.22 Discontinuities in correspondence fields.

Obviously, the discontinuities coincide with the object boundaries. As Figure 4.20 depicts,
object boundaries often coincide with boundaries of occlusion areas as well. In [Heit93]
experimental results indicate that the incorporation of S or R fields is useful only if
occlusion fields O are also taken into account.
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The discontinuity fields S are edge based, for which a domain has to be defined. A widely
used domain is defined as all sites between two pixels that are four-connected neighbors,
denoted by ΛS4, shown in Figure 4.23.

pixel

entry of ΛS 4

Figure 4.23 Four-connected edge domain ΛS4.

Clearly, ΛS4 contains two different kinds of sites, corresponding to horizontal edges between
upper and lower pixels and vertical edges between left and right pixels.

The discontinuity fields S normally have binary values. A “0” indicates continuity, a “1” a
discontinuity, see Figure 4.24.

S = 1

S = 0

Figure 4.24 An edge-based correspondence discontinuity field S.

Region-based segmentation fields R contain labels for each pixel in the image lattice ΛP. In
[Stil97] a label field RA is introduced containing natural numbers. Each region of pixels
sharing the same label represents a region that is smooth both in the luminance and
correspondence fields. In [Chan94, Stil97] a correspondence discontinuity field SCA is
derived from a label field RA as depicted in Figure 4.25. In [Chan94] the RA field is only
used for this purpose, while in [Stil97] additional ordering information is included which
allows for the analytic derivation of the occlusion field OA, using the CA field as well.

1 1 3 3
1 12 2
1 2 2 1
1 1 1 1

R SC

Figure 4.25 Given a label field R we can extract a correspondence discontinuity field SC from it by
simply comparing neighboring labels.

A major difference between the S and R fields is that R fields cannot model the open curves
as shown within the square in Figure 4.24. These open curves may appear in real images,
however, as is shown in Figure 4.26. A single object consisting of a pyramid attached to a
plane is recorded by a stereo camera. The fact that the object partly occludes itself in image
A leads to open curves of correspondence discontinuities in A.
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BA

IA IB

SCA SCBsingle
object

Figure 4.26 Open curves of correspondence discontinuities.

4.5.3 Special fields
Next we will discuss several special fields that have appeared in CE algorithms. In most
cases, the algorithms do not (yet) estimate the field pixel-dense and simultaneously.

Image noise
In [Brai95b], estimation of correspondences is combined with image restoration. Besides a
correspondence field, an image noise field is included. The estimation is performed
recursively by scanning the image.

Specular scene reflectivity
In [Pede95] a ‘field’ is introduced for specular reflectively of the scene in order to account
for large luminance differences in the image pair. The approach is feature-based, which
yields sparse results.

Correspondence fields for multiple images
In this chapter we deal only with pairs of images. Image sequences, both in temporal and
spatial (multiple camera) directions, can however be used to apply additional consistency
constraints. This requires the simultaneous estimation of as many dense correspondence
fields as there are images in the sequence. This yields a tremendous computational load. For
this reason probably, no actual attempt has been made in this direction.

In [Matt89] correspondences are estimated in a sequence, where pairs of images (t,t+∆t) are
treated one by one. The results are integrated (enhanced) by a Kalman filter. Recursive
approaches apply temporal consistency constraints [Stil97] to enhance the estimation in the
current image pair on the basis of the previously estimated fields. In [Patr97, Tsai97] the
recursive approach is applied on combined temporal/spatial image quadruples. In [Pede97b]
spatial image triples are used to obtain accurate feature-based correspondences from edges
of curved objects. In [Gram98] multi-camera spatial images are used. Due to a specific
camera setup (all in one line), however, a single correspondence field is sufficient in the
estimation process.

Epipolar geometry with uncalibrated image pairs
As discussed in section 4.2, the strong epipolar constraint can be applied in a spatial image
pair if the cameras are calibrated. For a spatial pair from uncalibrated cameras, the epipolar
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constraint can still be imposed if the geometry is estimated along with the correspondences.
In [Poll98] the pinhole camera geometry is estimated in a preprocessing step using sparse
feature (corner) detection and matching. In the simultaneous estimation of dense-field
correspondences in uncalibrated spatial image pairs, the epipolar constraint has been
applied recently [Rede98d] for cameras with lens distortion. In this approach a field is
estimated simultaneously that models the angle of the local tangent to the epipolar lines (see
Figure 4.27).

α

local
tangent

Figure 4.27 Epipolar geometry field.

The curvature of the epipolar lines is interpreted as lens distortion. It is extracted from both
images and then penalized. The advantage of this approach is that it does not require feature
extraction and estimation of predefined distortion parameters in a preprocessing step. To
apply the epipolar constraint in temporal pairs with multiple objects, one needs fields both
for epipolar geometry E and its discontinuities SE, visible in Figure 4.12. Further, a region
based segmentation field RE may be used to group isolated parts in the image into one rigid
object, e.g. the rod in Figure 4.12. A similar method has been used in object rigidity
checking on the basis of a sparse set of correspondences [Reyn96].

4.6 Joint probability model for the fields
The design of a joint probability model for several dense fields is by no means an easy task.
In general, the modeling process is decomposed at two levels. First, by applying the Bayes
rule, the fields can be modeled one at a time. Secondly, one can obtain the global model of
each of these fields by combining many equal, simple local models. These models assume
independence of all entries in a field or dependence only in a small neighborhood reflecting
the Markov property, see Appendix C.

As an example we take the approach of [Teka95b], in which the following joint probability
is modeled:

pC S O I IA CA A A B, , | , (4.12)

With the Bayes rule, the joint model is decomposed in several single field models:

p p p p

p
I C O I C S O S I

I I

A A A B A CA A CA B

A B

| , , | |

|

⋅ ⋅ ⋅
(4.13)
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In this decomposition several independencies among the fields are assumed. Table 4.2
shows the joint probability models and Bayes decompositions for the fields in Table 4.1.

Author Joint model Bayes decomposition

[Konr92] Konrad & Dubois ’92 pC S I IA CA A B, | , pI IB A|
−1 pI C S IB A CA A| , , pC SA CA| pS ICA A|

[Chan94] Chang et al. ’94 pC R I IA A A B, | , pI IB A|
−1 pI C R IB A A A| , , pC RA A| pRA

[Teka95b] Tekalp ’95 pC S O I IA CA A A B, , | , pI IA B|
−1 pI C O IA A A B| , , pC SA CA| pOA

pS ICA B|

[Woo96] Woo & Ortega ’96 pC O I IA A A B, | , pI IA B|
−1 pI C O IA A A B| , , pC OA A| pOA

[Stil97] Stiller ’97 pC R I IA A A B, | , pI IB A|
−1 pI C R IB A A A| , , pC R IA A A, |

Table 4.2  Joint probability models and Bayes decompositions.

Each of the Bayes factors represents a specific photometric or geometric model, or a
combination of them. Examples of photometric models are the Constant Image Brightness
(CIB) assumption and its deviations. Geometric models involve continuity and smoothness
of the correspondence field.

We will now present several commonly used models and then combine them into a joint
model. Finally we discuss some helpful but specialized models that are not yet used in the
Bayesian methods, or are used either rarely or in some limited form.

4.6.1 Image luminance models
The factor in the denominator of (4.12) is a constant given that we have observed the
images iA and iB. In steps 3 and 4 in the framework, criteria for best solutions and search
algorithms are selected that do not need the actual value. Thus this factor is never modeled
[Chan94, Konr92, Stil97, Teka95b, Woo96].

The first factor in the numerator in (4.12) is similar to the second factor in all Bayes
decompositions in Table 4.2. It has the form:

pI I CA B| , ....... (4.14)

This factor represents the probability of the luminance of the A image, given the IB image,
the correspondence and other fields.

We will now discuss three ingredients of the luminance models and then combine these.

Pixel independence
All current models for (4.14) assume that luminance is a field with independent entries:
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p pI pixel in A
all pixels
in image A

A |..... |.....= ∏ (4.15)

Constant Image Brightness (CIB) and deviations
The basic tool for (4.15) is the Constant Image Brightness assumption, which states that
each pair of corresponding pixels PA and PB have equal luminance:

( ) ( )I P I PA A B B= (4.16)

The CIB assumption is valid if the cameras are noiseless and all objects have diffuse
reflection properties. Additionally, in a spatial image pair the cameras should be
photometrically equal. In a temporal pair the photometry of the camera is not allowed to
change over time and light sources are not allowed to move with respect to other objects.

All current correspondence estimation algorithms assume CIB as a starting point and model
the deviations to some extent. Mostly, the causes for CIB deviations are modeled  together
by a zero-mean Gaussian [Chan94, Konr92, Teka95b, Woo96]:

( )p I e
I

∆
∆

=
−1

2

2

22

πσ
σ (4.17)

In [Stil97] a generalized Gaussian is used, with shape and variance parameters estimated
from the images. The shape parameters obtained suggest that a Laplacian outperforms a
Gaussian, a result which has been found earlier in [Mara89]. In [Pede95] deviations due to
specular reflection of scene surfaces are modeled in a feature-based approach for
correspondence estimation. Photometric differences in cameras can be accounted for in
advance by means of luminance histogram warping [Cox95].

Occlusions
For occlusion points in image A, no relation such as (4.16) or (4.17) can be established. In
[Stil97] the luminance is then modeled with a uniform probability distribution over all grey
levels:

( )p I
N greylevel

=
1

(4.18)

The complete model
We will derive a complete luminance model for the image IA given the image IB, the
correspondence field CA and the occlusion field OA, see Figure 4.28. According to (4.14) we
model each pixel independently:

( )p pI C O I I P C O I
P

A A A B A A A A B

A PA

| , , | , ,
=

∈
∏

Λ

(4.19)
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CA

IA

IB
OA =1

Figure 4.28  Predicting the luminance of image IA from image IB using correspondence field CA and
occlusion field OA.

To incorporate the occlusion pixel model (4.18) in (4.19), we need to know which pixels in
A are occlusion points, and for the Gaussian CIB deviation model (4.17) which pixels are
not occlusion points. This information is contained in occlusion field OA (4.5). In (4.17) the
∆I term refers to the luminance difference of a pair of corresponding pixels in A and B. For
each non occlusion pixel in image A, we need a real correspondence vector that originates
from that pixel. These vectors are the real correspondence vectors contained in the CA field.
If we apply (4.17) and (4.18) in (4.19) using the CA and OA fields (4.4) and (4.5), we obtain

( ) ( )( )( )
p

N
eI C O I

greylevelP
with O

I P I P C P

P
with O

A A A B

A PA

A

A A B A A A
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A
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∈

=

−
− +

∈
=

∏ ∏1 1

2
1

2

0

2

2

Λ Λ πσ
σ (4.20)

A similar expression is found in [Stil97], on the basis of a generalized Gaussian. In
[Konr92], no occlusions are taken into account and only the product series with OA = 0 in
(4.20) is obtained. The same holds for [Teka95b] in which the occlusion point model is
discarded.

4.6.2 Correspondence smoothness models
Within continuous areas of a correspondence field, it is assumed that the field is also a
smooth function of position. Smoothness of correspondence reflects smoothness of scene
surfaces.

The most basic smoothness constraint penalizes large values of the spatial derivatives of the
correspondence field. This means that differences of neighboring entries in the field are
penalized. Gibbs and Markov Random Field models are the tool to take into account such
interactions between neighboring field entries, see Appendix C.

An example of a Gibbs Random Field (GRF) model that enforces global smoothness on
correspondence field CA is:

( ) ( )U C P C PC A Q A Q
Q

A

S A

= −
∈
∑α 1 2

2

4Λ

(4.21)



Section 4.6  Joint probability model for the fields 115

The GRF is defined in the energy domain U instead of probability p, via p = e-U/Z (see
Appendix C). Figure 4.29 illustrates (4.21). For all neighboring entries (PQ1, PQ2) on the ΛP

domain, the cliques, the difference in the CA entries are squared and added. In (4.21) the
cliques are indexed by the entries Q of domain ΛS4. Large fluctuations in the
correspondence field yield high energies, which result in a low probability for that field.

pixel

 entries of C

 entries of S

PQ1
PQ2

Q

Figure 4.29 Cliques in a GRF for correspondence smoothing.

The scale factor α is used in all approaches to regulate the influence of the smoothness
constraint with respect to other constraints. Each constraint has its own scale parameter,
which are usually determined experimentally. For simplicity, we will use α for any scale
parameter in this section (in the experiments section we will use separate variables).

As shown in Appendix C, the energy UCA in (4.21) results in a Bayes factor:

p
Z

eC
U

A

CA= −1
(4.22)

As discussed in Appendix C, the value of Z cannot be computed. However, it is a constant
and it can be discarded from the modeling process for the same reason as the denominator
in (4.12).

In [Li95] the square in (4.21) is replaced by more general functions that more or less
incorporate discontinuities without modeling them explicitly.

It is often assumed that smoothness of correspondence C is correlated with smoothness of
luminance I. Overviews of these photometric-geometric models can be found in [Enke88,
Nage86, Snyd91]. Basically, these models relax smoothness constraints across luminance
edges, resulting in so-called oriented smoothness constraints.

Smoothing the correspondence field CA while taking into account the discontinuities
according to SCA can be performed by a compound GRF model involving both fields
[Konr92]:

( ) ( ) ( )( )U C P C P S QC S A Q A Q CA
Q

A CA

S A

| = − −
∈
∑α 1 2

2

1
4Λ

(4.23)
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Variations to (4.23) can be found in [Teka95b, Zhan93]. In [Chan94] and [Woo96] a
segmentation field RA is used as in Figure 4.25. In [Woo96] the occlusion field OA is used as
approximation to RA.

4.6.3 Correspondence discontinuity models
For the discontinuity field SCA in (4.23) several models have been proposed, which can be
divided in three different types.

Low number of discontinuities
Discontinuities can be penalized independently for each entry in the field:

( )U S QS CA
Q

CA

S A

=
∈
∑α
Λ 4

(4.24)

This enforces a low number of discontinuities. In [Chan94] a model similar to (4.24) is used
on the basis of label field RA and the procedure shown in Figure 4.25.

Coincidence of discontinuities in correspondence and luminance
A second model for discontinuities is that they often coincide with luminance
discontinuities [Konr92, Zhan93], reflecting a combined photometric-geometric constraint:

( )
( ) ( )

U
S Q

I P I P
S I

CA

A Q1 A Q2
Q

CA A

S A

| =
−∈

∑α 2
4Λ

(4.25)

In the case of a zero in the denominator no discontinuity is allowed at Q.

In [Stil97] a discontinuity field is defined on ΛS8, which also includes entries for diagonally
neighboring pixels (eight-connectedness). The field is extracted from a label field RA in a
similar way as that in Figure 4.25.

Global connectivity of discontinuities to form curves
The third model for discontinuities is that they form globally connected curves. The
connectivity is generally modeled by means of a GRF. Figure 4.30 shows an example of the
cliques and their energy in [Teka95b].

U = 0 U = 2.7 U = 0.9 U = 1.8 U = 1.8 U = 2.7

Figure 4.30 Cliques to enforce connectivity of correspondence discontinuities.

In [Konr92] similar cliques are defined, including additional cliques that prohibit single
pixels to become surrounded by discontinuities.
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4.6.4 Occlusion models
For the occlusion field, two types of models are generally applied.

Low number of occlusions
First the presence of occlusions can be penalized [Teka95a], similar to (4.24) for SC:

( )U O PO A A
P

A

A PA

=
∈
∑α

Λ

(4.26)

Penalizing occlusion points promotes the detection of real correspondences in an image
pair.

Global connectivity to form areas
The second model of occlusions encourages connectivity of occlusion points [Woo96].
Such a model can be obtained by applying (4.24) on discontinuities SO extracted from the O
field as depicted in Figure 4.25. In this way the occlusion points are forced to form
connected areas, as shown in Figure 4.20.

4.6.5 Combination into a joint model
To combine the luminance model (4.20), the correspondence smoothness model (4.23), the
correspondence discontinuity model (4.24) and the occlusion model (4.26) into a joint
probability model, we will convert the latter three to the probability domain. For the
occlusion model, this results in:

p
Z

eO
U

A

OA= −1
(4.27)

Similar to (4.22), the partition function Z is a constant and can be neglected. For the
discontinuity adaptive correspondence smoothness model (4.23) we have:

p
Z

eC S
U

A CA

CA S A
|

|= −1
(4.28)

In this case, the partition function Z is not a constant, but a function of the conditioning field
SCA [Gema84], which itself is not constant during estimation. This is often neglected, as is
done in [Chan94, Konr92,Teka95b, Woo96], even though it is inconsistent with the
application of the Bayes rule.

In general, partition functions are not constant when two or more output fields interact with
each other and are modeled in the energy domain. A way to circumvent this is not to apply
the Bayes rule on those fields. Instead, we combine the energies of (4.23) and (4.24) to form
a model that is joint in these two fields:
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p
Z

eC S I
U U

A CA A

CA S A S A I A
, |

, |= − +1
(4.29)

In [Stil97] this is applied on the correspondence and segmentation fields CA and RA.

At this point, we face a similar challenge for a different reason. The models (4.20) and
(4.29) contain circular dependencies of IA and CA, and thus these equations cannot be
combined to form a joint model by means of the Bayes rule. If an attempt is made, the
wrong image B appears in one of the Bayes factors (see Table 4.2). If the CM field is used, it
is not clear which image should appear on which side.

A general solution is to transform also the luminance model to the energy domain via
U = -ln p, and then to add all energies to form a joint model:

( )′ = − + + +
p

Z
eC S O I I

U U U U

A CA A A B

I A C A O A I B C A SCA S A I A OA

, , , ,
, , , , ,

1
(4.30)

For the energy terms in (4.30), no relation with any Bayes factor can be established for the
decomposition of p’. In the optical-flow-based approach in [Heit93] a joint model is
designed similarly.

In (4.30) the joint model is constructed by adding energies freely instead of by using the
Bayes rule. This is at the cost of some explicitness in the modeling process, but inevitable
since it allows for the integration of several useful models.

4.6.6 Special models
In section 4.5.3 we discussed several special fields. If introduced in CE algorithms, an
additional model is needed also. Models for those special fields can be found via the
references in section 4.5.3. Here we discuss two special models, that are related to  normal
fields such as correspondence and discontinuities fields.

Ordering constraint
A strong and useful relation exists between correspondence, its discontinuities and epipolar
geometry. If there is an interval without correspondence discontinuities along a pair of
conjugate epipolar lines, then the ordering constraint holds at this interval. The constraint
means that scene points appear in the same order along the intervals in A and B, see Figure
4.31.

p q r
prq

IA IB

s t u st u

Figure 4.31 The ordering constraint.
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The ordering constraint does not always hold across discontinuities. Figure 4.31 shows an
example in which a thin object moves fast in front of a background (temporal pair), or is
present in front of it and recorded by a stereo camera with large baseline (spatial pair).

In disparity estimation in parallel image pairs, the ordering constraint is often applied
globally, regardless of discontinuities [Cox96, Rede98a, Tsen95]. This simplifies the
algorithms because a strong constraint can be applied without the need for discontinuity
estimation. Additionally, it enables the use of the deterministic search algorithm dynamic
programming (DP), see section 4.8. In temporal and uncalibrated spatial image pairs, the
ordering constraint has not yet been applied.

Round-about constraint
The round-about constraint holds among several correspondence fields for multiple images
of the same scene. Two fields may e.g. be used in a stereo image pair to estimate all pseudo-
correspondences (section 4.5.1), multiple fields may be used for CE within multiple images
(section 4.5.3). In such cases, a consistency relation between the fields exists for any scene
point that is visible in all the images.

Consider the simple case of two images A and B and two correspondence fields CA and CB.
If we find for scene point P that CA(PA) = PB, then we must have CB(PB) = PA. The
constraint can be most easily described by CB(CA(PA)) = PA. A loop is formed between the
A and B images, giving the constraint its name. In the combined temporal/spatial approach
of [Patr97], image quadruples IA(t), IB(t), IA(t,t+∆t), IB(t,t+∆t) are used. If we call these
images IA, IB, IC and ID, and use four correspondence fields CA→B, CB→C, CC→D, CD→A, the
round-about constraint may look like this. If CA→B(PA)=PB, CB→C(PB)=PC and CC→D(PC)=PD,
then we must have CD→A(PD)=PA.

The constraint can be used to estimate one of the fields given the other fields, but only in
terms of the real correspondences (pseudo-correspondences are unique for each of the
fields). The specific form of the constraint depends on the way the correspondence fields
are arranged.

4.7 Criteria for best solutions
The best solution fSOL can be defined in many ways. In the area of simultaneous estimation
of dense correspondence fields, three criteria are used: the Maximum A Posteriori (MAP)
criterion, the Maximum Likelihood (ML) criterion and the mean field (MF) criterion.

4.7.1 Maximum a Posteriori  criterion (MAP)
The most widely used criterion is the MAP criterion [Chan94, Konr92, Stil97, Teka95b,
Woo96]:
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( )f p f i iMAP
f

F I I A BA B
= arg max $ , ,

$ | ,
(4.31)

The MAP criterion selects the solution that has highest probability given the observed
images iA and iB. Since these are constants in the maximization in (4.31) we have:

p p p pF I I F I I F I I F I IA B A B B A A B| , , , , | , |∝ ∝ ∝ (4.32)

The MAP solution can be obtained by maximizing any of the probability functions in
(4.32).

4.7.2 Maximum likelihood criterion
This criterion is defined as:

( )fiipf BAFII
f

ML BA

ˆ,,maxarg |,ˆ
= (4.33)

On its own, this formula does not make any sense. The observed images iA and iB are used
as argument of a function that accepts possible images as arguments, and vice versa for the
other argument. Since

F

IIF

FII p

p
p BA

BA

,,

|, = (4.34)

the ML criterion makes sense as special case of the MAP criterion, see (4.31) and (4.32),
provided that the marginal probability function pF of the fields to be estimated, the prior
model for F, is a constant. This excludes any correspondence smoothness model, occlusion
model or discontinuity model. Therefore, the ML criterion cannot be used in
correspondence estimation. In [Cox96] an ML algorithm is presented that implicitly
penalizes occlusions, so it is not a real ML algorithm.

4.7.3 Mean field criterion (MF)
The MF criterion is used less frequently than the MAP criterion and is defined as:

( )f f p f i i dfMF

f

F I I A BA B
= ⋅∫ $ $ , , $

$
| ,

(4.35)

It yields the average or expected solution, which is equal to the first moment of the
probability function on the output variables conditioned by the observed image pair. It can
only be used for continuous output variables, since discrete variables such as binary
occlusion and discontinuity fields cannot be averaged.
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This criterion is used in [Zhan93], and in [Konr92], where it is called mean expected cost
(MEC) criterion.

4.7.4 Summary
From the above, it is clear that the ML criterion is not useful for our application. The
remaining MAP and MF criteria are special cases of a parameterized family of criteria
[Ther92]. The MF criterion has been reported to yield results similar to the MAP criterion
whenever both criteria can be applied [Konr92].

Whenever discrete fields are used (occlusion or segmentation/discontinuity fields), only the
MAP criterion is applicable. If only continuous fields are used, both MAP and MF criteria
are available and these lead to similar results. The choice can then be made based on other
terms, e.g. the availability of an efficient search algorithm.

4.8 Search algorithms
Here we will discuss several search algorithms for the MAP and MF criteria. After that, we
discuss the hierarchical approach that can be used in combination with the search algorithms
to speed up computation time and to increase the quality of the estimated fields.

4.8.1 MAP search algorithms
Since the dimensionality of (4.31) is extremely large, the probabilities get extremely small.
Even for the actual MAP solution fMAP it may be in the order of 10-1,000,000. Therefore energy
is used rather than probability in the numerical evaluation of (4.31). As an example we will
consider the joint model in (4.32):
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Maximization of probability is equivalent to minimization of energy:
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(4.37)

The partition function Z is a constant and has been removed in (4.37). Many search
algorithms are available for the minimization in (4.37). They are either exact or
approximate, and either deterministic or stochastic.

The most well-known technique for these kinds of minimizations is the downhill or gradient
descent method [Pres92]. It is a deterministic method that easily gets stuck in local minima.
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To avoid local minima, stochastic methods are used, such as simulated annealing (SA). In
SA, an estimate to the solution is perturbed at random. Better estimates (less energy) are
always accepted, worse estimates are accepted now and then, governed by a temperature
parameter. If one decreases the temperature from T0 to zero infinitely slowly [Gema84], the
exact solution to (4.37) is reached. In practice, the temperature is lowered much faster and
an approximation is obtained.

To use the SA algorithm, one has to define a temperature-cooling schedule and a random
perturbation generator. At this point there are no general rules to help the designer. In
[Stil97] a cooling schedule is chosen that decreases exponentially. A table is presented with
several perturbations, such as small changes in the correspondence fields and flipping of the
binary values of the occlusion and discontinuity fields.

Many different versions of SA have been presented, e.g. the Metropolis algorithm
[Teka95b], Iterated Conditional Modes (ICM) [Chan94, Heit93, Teka95b], and the so-
called Gibbs sampler methods [Gema84]. The interested reader is referred to the specific
articles for details.

The only exact and deterministic algorithm for the MAP solution is the Dynamic
Programming (DP) or Viterbi algorithm [Cox96, Fran96, Gram98, Inti94, Rede98a,
Tsen95]. It can be used to estimate disparity in parallel image pairs. It requires that (4.37) is
separable in all scan lines, which excludes interactions between scan lines, such as
smoothing. It is especially efficient if the ordering constraint (see sections 4.5.1 and 4.6.6)
is applied.

Figure 4.32 shows the MAP solutions for the DM field, obtained by an exact DP algorithm
without vertical smoothing, and by an approximate SA algorithm including vertical
smoothing that obtains the dense field simultaneously. Clearly, the result from the SA
algorithm shows consistency in the vertical direction, while the DP result appears quite
random vertically. This effect is strongest in areas without texture.

IA
IB

DM

DP

DM

SA

Figure 4.32 MAP solutions obtained by DP and SA search algorithms.

Adaptations to the DP algorithm have been made in [Ohta85, Rede98b], which include
vertical consistency to some extent, without the need for simultaneous estimation. Recursive
estimators have been derived that have similar properties [Brai95b]. These approaches have
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non-separable (4.37) as a starting point, that is, a general MRF model. In all these
algorithms that combine vertical consistency with causal search algorithms, the modeling
and the search algorithm are intertwined. Therefore it is less clear which model is
effectively used.

Genetic algorithms (GA) have been used for correspondence estimation. In [Fran95] the
estimation is done separately for each scan line. For dense simultaneous estimation the GA
approach is not feasible since it requires several solution estimates to be maintained at the
same time. This demands a tremendous amount of memory and computational power.

4.8.2 MF search algorithms
The Mean Field Theory (MFT) is used in [Zhan93] to obtain the MF solution. It is based on
the following approximation to (4.35):
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It means that if the mean solution of all fields frest is given except for a single entry of one
field fsingle, we can obtain an approximation to this single variable. Evaluation of (4.38) only
requires integration over a single variable of the output space, while (4.35) requires
integration over the entire solution space. The marginal probability model in (4.38) can
easily be obtained from joint models on the basis of Gibbs Markov random fields, see
Appendix C.

Given an approximation of the complete solution, we can obtain a better approximation of
each single variable with (4.38), in order to obtain the next approximation of the complete
solution.

In  [Konr92] a different technique is used to obtain the MF solution, which is based on the
so-called Gibbs sampler [Gema84]. A Gibbs sampler provides a sequence of different
realizations fGibbs,i of the fields to be estimated, according to the probability model 

BA IIFp ,|

in (4.35). A statistical average of N of these realizations is an approximation to the mean
solution:
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4.8.3 Hierarchical approach
The MAP and MF search algorithms for dense fields yield a large computational burden.
Although stochastic methods are designed to avoid local minima, the restrictions for a
feasible implementation (fast cooling schedules and a low number of iterations) still lead to
problems with local minima.
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A general approach that provides faster convergence and at the same time avoids local
minima is the hierarchical approach. Due to its good results for natural images it is used in a
wide variety of correspondence estimation algorithms [Acca95, Chan94, Enke88, Heit93,
Konr92, Liu93, Ohm98, Patr97, Rede99c, Stil97].

Figure 4.33 depicts the hierarchical approach. The observed images are downsampled to
lower-resolution versions. The original images are at level 0; the resolution decreases with
increasing level number. At the lowest resolution level L the estimation starts. After
estimation, the fields are upsampled to the resolution of level L-1. These fields are then used
as an initial estimate for the estimation at this level. This continues until estimation is
performed at full resolution level 0.

upsampling

estimation

final estimate
 level 1

 initial
estimate level 0

IA IB

final estimate of C, O, ....

downsamplingdownsampling

upsampling

estimation

 initial
estimate level 1

downsamplingdownsampling

Figure 4.33 Hierarchical estimation.

Many different upsampling, downsampling and estimation schemes can be chosen. This
involves the selection of new lattices Λ for the lower-resolution fields, suitable filters and
possibly level-dependent search algorithms. In most cases, the influence of these choices is
small compared to other choices made in the four steps in the Bayesian framework.
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The most popular schemes for the lower-resolution lattices are the 2:1 schemes [Konr92,
Stil97], in which both x and y axes are subsampled with a factor two. Schemes with non-
integer ratios also exist. In [Lund98], the effect of these schemes on computational
efficiency is investigated. Many different filters are used for downsampling the images, such
as Gaussian filters [Liu93, Patr97] and low-pass FIR filters [Konr92]. In [Stil97] bilinear
filters are used to upsample the correspondence fields, and nearest-neighbor interpolation
filters to upsample the discrete label fields.

Generally, for the estimation at different levels, the same algorithm is applied at each level.
However, some authors include level dependencies, such as increased smoothness
constraints [Patr97] or removal of discontinuity fields at lower resolution levels [Konr92].
In [Luet93] special types of Markov Random Field probability models are investigated for
which the efficiency of level-independent estimation schemes is optimal. Using other
models, however, may still result in near optimal schemes [Stil97].

In literature, we found no reference to the combination of the hierarchical approach and the
temperature cooling schedule in simulated annealing approaches. Both regulate the scale or
resolution at which perturbations influence the final estimate of the solution. If combined,
the SA temperature schedule might not be needed to provide convergence, which simplifies
the algorithm substantially.

4.9 Bayesian design of new estimators
In this section we will propose two correspondence estimation algorithms. They are
designed to meet the requirements of our 3-D videoconferencing application, which are high
(pixel-dense) resolution, sub-pixel accuracy if possible, and reasonable computational load
enabling real-time algorithms at this moment or in the near future. In the design we will
follow the Bayesian approach using the four steps. We will make full use of our findings in
sections 4.4 to 4.8 and show that the four steps enable us to design the estimator in a clear
and fast way. Especially, we will use and test the conjecture made in section 4.8.3 about the
efficient combination of SA search algorithms and the hierarchical framework.

First we discuss a basic algorithm in section 4.9.1 that uses the parallel camera setup.
Experiments are performed in section 4.9.2. Then in section 4.9.3 we propose a modified
estimator that can deal with uncalibrated cameras in any camera setup, followed by
experiments in section 4.9.4.

4.9.1 Disparity estimator for parallel camera setup
Due to the parallel camera setup, correspondence estimation is reduced to disparity
estimation, see section 4.2.3. Figure 4.9.1 shows the first stereo frame of a sequence taken
by Heinrich Hertz Institute Berlin. The source material is typical for videoconferencing: a
human head plus shoulders in front of a uniform background. The camera baseline was as
large as 30 cm to enable high-accuracy 3-D scene acquisition, which yields also large
differences between the left and right images.
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Figure 4.34 Typical stereo images for a 3-D teleconferencing application.

The design of the estimator is divided in the four steps of the Bayesian framework.

Step 1: Definition of fields
We will use three pixel-dense fields: the original images IA (left) and IB (right), and the
disparity field DM. In our application, only one object of interest is present, the human
subject, and thus we do not introduce segmentation fields. Similarly, as occlusions arise at
object edges, we do not include occlusion fields. This will lead to falsely found real
correspondences at the ears in Figure 4.9.1, where in principle only pseudo-
correspondences can be estimated.

To allow for sub-pixel correspondence estimates, the original images will be interpolated
(online) to continuous images by bilinear interpolation, see section 4.5.1. We will use the
DM disparity field with a real-valued x component (it has no y component, see section
4.5.1). We will use DM and not DA or DB to make the aforementioned effect around the ears
symmetrical and less noticeable. In section 6.3.4 this effect will be studied in more detail.

Step 2: Joint probability model of all fields
As discussed in section 4.6.5, especially when the DM (or CM) field is used, we can only
form a joint model by designing all submodels in the energy domain and by adding them
freely to form the joint model.

We will use two submodels: one for the luminance of images IA and IB, and one for the
smoothness of correspondence field CM. For the luminance model, we will use (4.20) with
the DM field, without occlusions. Further we take the Laplacian instead of the Gaussian, as
this was reported to yield better results (see section 4.6.1):
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For the smoothness model we use (4.21) applied to the DM field:
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Figure 4.29 shows the meaning of Q and PQ1 and PQ2. Effectively, this model penalizes non-
zero spatial derivatives of the correspondence field (extracted with [-1 1] and [-1 1]T filters).
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Although we do not incorporate an occlusion field for our application, we do include a
rudimentary model for occlusions. For very large values of an entry of DM, a
correspondence vector will point outside both the A and B images, which can be interpreted
as a scene point that is visible in virtual image M but is occluded in both A and B images
(since it falls out of the images). We introduce a bias for all correspondence vectors to point
inside the images:
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The joint model is then formed by adding the energies, including weight factors:

occlusionsmoothnessluminancejoint UUUU βα ++= (4.43)

Experimentally, we have to find the weight coefficients α and β. The conversion to
probability via p = e-U/Z will not be necessary, since the next steps will work on energy U.

Step 3: The criterion for the best solution
We will use the MAP criterion, since we will use simulated annealing as our search
algorithm, see sections 4.7.4 and 4.8.1.

Step 4: The search algorithm
The MAP criterion requires the minimization of (4.43) with respect to the DM field. For this
we will use a simulated annealing (SA) algorithm in combination with the hierarchical
approach, see sections 4.8.1 and 4.8.3. We conjectured in section 4.8.3 that the hierarchical
approach may take over the effect of the SA temperature cooling schedule. Therefore we
select the temperature T to be constant.

The basis of our SA algorithm is visiting each entry of the DM field, to perturb it with a
Gaussian random value with some σ, and to calculate the ∆Ujoint in (4.43) it yields. If ∆Ujoint

is negative, a better solution is found and the perturbation will be accepted permanently. If
∆Ujoint is positive, a worse solution is found and the perturbation will be accepted only with
probability p = e-∆U/T, as explained in section 4.8.1. The calculation of ∆Ujoint can in
principle be done by calculating Ujoint in (4.43) completely both before and after the
perturbation. This would require the full summation in (4.40), (4.41) and (4.42). In any
Markov Random Field model, a perturbation has only local effects on these summations,
that is, a single entry of (4.40), four entries of (4.41) and one entry of (4.42). Therefore
∆Ujoint can be calculated very efficiently. In our implementation we choose to scan all of the
field entries with perturbations first, and after that update the whole field simultaneously
with all accepted perturbations. In this way, no scan pattern needs to be defined and no field
entries have a special role (start or end points in the scanning).

To enable sub-pixel accuracy, we extend the hierarchical approach beyond the pixel-
resolution level 0 as indicated in Figure 4.33. After this level we do not increase the
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resolution, but decrease the σ of the perturbations of the SA algorithm. Experimentally, we
have to find values for the temperature T, the sigma σ of the perturbation generator and the
number of iterations on each level.

4.9.2 Experiments
For the stereo image pair in Figure 4.34, we have performed a large number of experiments.
These lead to the experimentally found values of α = 3, β = 100 for the joint model of step
2, and σ = 2 and T = 1 for the SA algorithm in step 4. The results were quite insensitive to
the value of β in the range of 10-1000 and T between 0.1 and 10. The values of α and σ,
however, could be changed only about ±0.5 without effecting the results. For larger α or
smaller σ the results were too smooth, while for smaller α or larger σ the algorithm did not
converge well.

The number of iterations performed on each resolution level in the hierarchical approach
was chosen as shown in Table 4.3. For all levels, the number of iterations can be increased
without affecting the results, but when the number is decreased, the quality drops.
Increasing the number of iterations on the high-resolution levels increases the computational
load of the algorithm severely. At the top of the hierarchy more levels can be included,
which in theory allows reaching any arbitrary sub-pixel accuracy. However, we assumed
that more than 1/8 pixel was not relevant.

Hierarchy
level

Resolution σ Number of
iterations

-4 386x386 0.125 3
-3 386x386 0.25 3
-2 386x386 0.5 3
-1 386x386 1 3
0 386x386 2 10
1 193x193 2 10
2 96x96 2 30
3 48x48 2 30
4 24x24 2 100
5 12x12 2 100
6 6x6 2 100
7 3x3 2 100

Table 4.3 Perturbation noise and number of iterations performed on each resolution level in the
hierarchical approach.

Figure 4.35 shows the DM field on several levels in the hierarchy. The silhouette of the
person’s head is clearly visible. Subjectively, the indicated disparity or object depth values
are in agreement with those to be expected. The values in the background are not correct,
but since there is no texture it is not possible to deduce its disparity or depth.
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Figure 4.35 The estimated DM field during several levels in the hierarchy. The final estimate with full
resolution is at level 0. Bright areas indicate large disparity (near objects) and dark areas small disparity
(distant objects).

We evaluated the quality of the DM field via interpolated views and 3-D models. Figure 4.36
shows interpolated views using the estimated DM fields for several frames in the sequence.
Figure 4.34 shows the original images for the first frame. The interpolation was done by
copying image luminance from the original left and right images along the vectors in the DM

field onto the ΛPM grid, see Figure 4.21. In Chapter 6 the interpolation algorithm is
described in detail. Clearly, the interpolated views appear as very natural camera images.

Figure 4.36 Interpolated views using the estimated DM field for several frames of the original image
sequence. Figure 4.34 shows the original images for the first frame.
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An important observation is that the simulated annealing algorithm works very well with the
constant temperature schedule. As conjectured in section 4.8.3, the hierarchical approach
takes over the role of the cooling schedule. The computation time was about 20 seconds per
frame on a Silicon Graphics Octane computer. This is orders of magnitude faster than the
computation times reported in other Markov Random Field and Simulated Annealing based
algorithms [Stil97]. This is ascribed to the only significant difference with these approaches:
the new combination of the SA algorithm and the hierarchical approach.

About 5% of the runs of the correspondence estimation algorithm did not converge to the
right solution. Such non-convergence percentages are seldomly reported, hence we cannot
compare this result with other approaches. Figure 4.37 shows interpolated views for two of
the non-converged cases. We could not find values for α and σ that always ensured good
convergence. By tuning T (> 1) and the number of iterations in the hierarchy as well, we
could always find frame-specific settings for which good results were ensured.

Figure 4.37 Interpolated views for runs of the correspondence algorithm that did not converge to the
right solution.

This sequence was accompanied by calibration parameters, and thus we could perform
scene triangulation directly. Figure 4.38 show several views of the 3-D model acquired. The
ears do not appear well in the 3-D model, but this is to be expected since they cannot be
seen in stereo in the original images. Also the background appears as some strangely folded
cloth. This is to be expected, since it does not contain any texture. These artifacts are
completely invisible in the interpolated views. This confirms that multi-viewpoint
interpolation does not require pure geometrically correct correspondences (see section 4.1
and Figure 4.2) opposed to 3-D from stereo applications.

For the face that contains texture and is visible in both images, the quality of both the
interpolated images as well as the 3-D model are subjectively good. Since no ground truth
data was available for our natural image material, a quantitative evaluation was performed
on a subjective basis. When viewing a sequence of the 3-D models as shown in Figure 4.38,
we  judged that small random noise was present with a size in the order of 5 mm in
textureless parts of the face (e.g. cheeks) while areas with rich texture (e.g. nose tip with
specular reflections) were stable.
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Figure 4.38 The 3-D model obtained from several frames in the sequence, seen from several different
viewpoints.

4.9.3 Correspondence estimator for uncalibrated cameras
Whenever the cameras are not in parallel setup, and not calibrated so we cannot rectify their
images (see section 2.4.9), we cannot use the algorithm of section 4.9.1. First of all, the
correspondence vectors will have a y component. But just as important, the camera
orientations and zoom factors might differ. This will lead to rotations between the images
and scale differences. The smoothness model in section 4.9.1 will regard this as non-
smoothness and thus provide a bias towards zero rotation and equal scale. Next we will
discuss the changes we must make in the algorithm of section 4.9.1.

Step 1: Definition of fields
Instead of the DM field, we will use CA. First, we need to introduce also the y component.
Secondly, as discussed in section 4.5.1, the CM field cannot be used in some special cases,
e.g. when the cameras differ 180º in orientation.

Step 2: Joint probability model of all fields
We will use the joint and occlusion models from section 4.9.1, but change the luminance
and smoothness models. First, the luminance model is given by:
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which only differs from (4.40) in that CA is used instead of DM. For the smoothness model
we use:

( ) ( ) ( ) ( ) ( ) ( )∑
Λ∈

+−++−=
PAP

AAAAAA PCPCPCPCPCPCU
2

43

2

21smoothness 22 (4.45)



132 Chapter 4  Correspondence estimation

Figure 4.39 shows the GRF clique used (see also Appendix C). This is quite different from
(4.41). In (4.41), the first derivative of the correspondence field is penalized, while in (4.45)
the second derivative is used. This model is invariant for differences in translation, rotation
and scale between the A and B images, as required for this estimator.

P1 P2

P3

P4

Ppixel

Figure 4.39 Gibbs Random Field clique for the smoothness model on the 2nd derivative.

Step 3: The criterion for the best solution
We will use the MAP criterion, similarly to the algorithm for parallel cameras.

Step 4: The search algorithm
The search algorithm is the same as for the algorithm for parallel image pairs, with only one
exception. The perturbation is now a value of a 2-D Gaussian, added to the x and y
components of the CA field.

4.9.4 Experiments
For the correspondence estimator in section 4.9.3, we have performed experiments with
synthetic images. The images contained large differences in both rotation (90°) and scale
(about 1:2). We have also incorporated curvature effects due to (simulated) lens distortion.
The parameter settings for the joint model, SA algorithm and hierarchical approach were the
same as for the algorithm for parallel cameras.

Figure 4.40 shows the original images together with interpolated views. Similarly to the
parallel algorithm, about 95% of all runs converged to the right solution. From the results
we see that the estimator can deal effectively with large differences in rotation and scale.
Especially the result with 90° rotation is almost impossible to obtain with a classic
correspondence estimation method. Similar results have also not been reported earlier for
Bayesian approaches.

The aquarium in the interpolated image is smaller than in the original images. This is no
artifact, but due to the pixel-wise interpolation of the left and right images in stead of global
rotation. For example, in a sequence of interpolations from the left to the right image, corner
points will move in a straight line along the image edge to another corner.

These results open the way for fully automatic and fast correspondence estimation in images
from uncalibrated cameras. The correspondence fields found can be used as input for self-
calibration methods, enabling fully automatic calibration.
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Figure 4.40 Synthetic stereo image pairs (left and right) and interpolated images (middle). The original
images contain large rotational differences (top) or scale differences (bottom).

4.10 Conclusions
Correspondence estimation (CE) in a stereo image pair is the most complex and demanding
step in the acquisition of 3-D scenes. For this application we require high-resolution (pixel-
dense) and high-accuracy correspondence fields. These fields must be calculated in real-
time for dynamic scenes. Hence, we require that the computational load of the
correspondence estimation is sufficiently low.

A huge amount of literature is devoted to the topic of correspondence estimation, since
many other applications exist in which correspondence estimation plays an important role.
These include MPEG-4 object-based video coding, multi-viewpoint image generation,
camera calibration, structure from motion and 3-D from stereo applications. All of these
applications require geometric correspondences. Such a correspondence represents a 3-D
scene point, while a photometric correspondence just represents photometric similarity
between image points. The high-resolution and high-accuracy estimation of geometric
correspondences requires complex dense field models. These reflect the prior model of the
scene to be acquired. Such a model can only be designed on a heuristic basis, which
explains the great diversity in CE algorithms. Since a model in general does not have causal
properties (along the image axes), the estimation of all correspondences should in principle
be done simultaneously. If the correspondences are estimated one by one for the whole
image, implicitly a causality constraint is imposed on the dependencies between the
correspondences in the model.

The classic approaches to correspondence estimation, feature detection and matching, block
matching, pel-recursive algorithms and optical-flow methods are not suitable for our
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application. They do not yield a pixel-dense correspondence field, they fail to estimate the
entire field simultaneously, or they are only successful for stereo images with very small
baseline (images are almost the same).

More recently, several promising algorithms have been developed that are suited for our
application. These employ the Bayesian approach, which uses explicit probability models of
the images, the correspondence fields and their segmentation. This increases the portability
and adaptability of algorithms among different applications and different designers. The
ingredients of the models can be categorized in photometric and geometric models.
Photometric models include image luminance and its discontinuities in relation to those of
the correspondence field. Geometric models, needed for geometric correspondence
estimation, currently include a priori models for occlusions, and continuity and smoothness
of correspondence.

We recognized four distinct steps in the Bayesian approach. First, all variable fields to be
estimated are clearly defined. Secondly, a joint probabilistic model is designed for all
variables of all fields. Then, in the third step, a criterion (e.g. MAP) is adopted to define the
best solution mathematically. Finally, in the fourth step some search algorithm estimates this
solution.

In the field definition and modeling steps, we reviewed many fields and models found in
literature and categorized them using a uniform notation. We focused at Gibbs and Markov
Random Field (GRF, MRF) models that are especially suited for the Bayesian approach.
Further, we reviewed several special fields and models that have already appeared in CE
algorithms, but have not yet been used for the application of dense geometric fields and
provide areas for future research.

We found that several models for interacting fields cannot be combined using the Bayes
rule, opposed to some false attempts in literature. A way to circumvent this is to refrain
from using this rule in the probability domain and combine the models in the energy
domain. This is at the cost of explicitness of the modeling, but an advantage is that the joint
model can be synthesized more freely and can include more submodels and constraints.

In the solution definition step, we concluded that the Maximum A Posteriori (MAP) and
Mean Field (MF) criteria are applicable for CE purposes. The Maximum Likelihood (ML)
criterion is not. Approaches in literature that claim to use the ML criterion always turn out
to use the MAP criterion implicitly after having a close look on the algorithm.

In the search algorithm step, we reviewed many algorithms such as downhill descent,
Simulated Annealing (SA) and Dynamic Programming (DP) techniques. We found that the
combination of the cooling schedule in SA algorithms and the popular hierarchical speedup
method results in a simpler version of the SA algorithm, which in addition has far better
computational aspects.

We have designed new correspondence estimators based on the requirements we have set
for our application and the findings in our review. Two algorithms were derived: one for
parallel image pairs and one for general pairs from uncalibrated stereo cameras. We
designed both completely using the Bayesian approach, with MRF models, the MAP
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criterion and search algorithms on the basis of simulated annealing (SA) in a hierarchical
fashion. Both algorithms had run times in the order of 20 seconds, which is orders of
magnitude faster than other results from literature. This is ascribed fully to the combination
of the simpler SA algorithm and the hierarchical approach. The low computational aspects
of the algorithms show that the Bayesian methods with MRF models and SA search
algorithms are no longer only in the domain of research, but will also become available
soon in practical real-time applications. Our implementation is still a factor of about 500
slower than real-time, but a hardware implementation may use the fact that MRF algorithms
can be implemented in massive parallel computational structures.

With the algorithm for parallel image pairs, we obtained high-quality correspondence fields.
They were subjectively evaluated by using them for image interpolation and 3-D model
generation. High-quality 3-D models were obtained from stereo images typical for a 3-D
videoconferencing application. With the algorithm for uncalibrated cameras, we have
performed experiments with synthetic stereo images that contain large rotational and scale
differences. High-quality correspondence fields were obtained that show the robustness of
the algorithm against these differences to an extent not reported in literature before.

In future research related directly to our algorithms, the introduction of a temporal
consistency constraint might eliminate the few spurious results as in Figure 4.37.
Additionally, it would increase the accuracy by lowering the random noise on the 3-D
models. As an application for our algorithms,  the fields estimated with them are still to be
used for self-calibration of cameras.

A big issue to be solved is the evaluation of our and similar algorithms with objective and
meaningful quality measures. The measures we used were subjective, enabling rough
evaluation but no quantitative comparison with other methods. In literature, the majority of
CE algorithms are used for video coding, where PSNR and coding efficiency are valid
quality measures. In the domain of 3-D scene acquisition from stereo, a different measure is
needed.
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Chapter 5 

3-D scene visualization on stereo
displays

5.1 Introduction
This chapter deals with the 3-D scene visualization part of the adaptive multi-viewpoint
system defined in the introduction of this thesis and shown in Figure 5.1. The task of the
visualization part is to provide the viewer with a stereo image pair in such a way that the
3-D scene is visualized correctly. The stereo image pair is generated on the basis of the
incoming 3-D scene model. To allow the viewer to observe the scene from his own angle of
interest, it is necessary to adapt the generated images continuously to follow the position of
the viewer’s eyes. The stereo display shows the two images of the stereo pair to the viewer’s
left and right eye separately, either by using special glasses or by means of an
autostereoscopic display that does not impose any eye wear on the viewer.

x

y

Stereo
display

Viewer
z

Stereo image
synthesis

Eye
tracker

Scene
model

Figure 5.1 The scene visualization part of the multi-viewpoint system.

Two signal-processing tasks are involved in the visualization part:

 • 3-D tracking of the viewer’s eyes.
 • Generation of the correct stereo image pair on the basis of a 3-D scene model and the

eye coordinates.
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For the stereo display, products are commercially available, e.g. [Hein, Phil] or PC monitors
in stereo mode. Eye trackers are commercially available that operate on the basis of markers
on the viewer, e.g. [Orig]. In research, also non-invasive trackers are available on the basis
of eye recognition in images taken from the viewer, see e.g. [Rede97e]. We used the tracker
from [Orig] and a high resolution PC display in stereo mode in combination with
professional LCD shutter glasses [Ster].

Image synthesis, for our application multi-viewpoint image synthesis, is currently an
important topic in computer vision research. Many algorithms are present that generate
images from virtual cameras, on the basis of images taken by real cameras. The virtual
cameras are either positioned and orientated arbitrarily [Faug96, Fuji96, Levo96] or
restricted to a position in between the two real cameras of a stereo pair. In the latter case,
image interpolation can be used to synthesize the images [Chup94, Ohm97, Seit95,
Veig96]. Images that result from all these algorithms can in principle be acquired by
appropriately positioned real cameras. However, such images, if they are shown on a stereo
display, cannot visualize the scene without geometrical errors. A correction is needed where
the entire image is shifted a number of pixels in the x and y directions. This has been shown
for stereo systems [Grin94, Kutk94] and for multi-viewpoint systems on the basis of image
interpolation [Kang96, Pano95, Rede97f]. In both cases, only the x component of the shift is
involved. In [Pasm97], a similar result is obtained for a mechanical fixed multi-viewpoint
system on the basis of X-ray images. In this chapter we examine the general case for
adaptive multi-viewpoint systems. This investigation is based on [Rede97b, Rede00].

Whenever multi-viewpoint images are constructed with the general algorithm incorporating
the aforementioned shift, the 3-D scene visualization might still suffer from geometric errors
for several reasons. Clearly, the resolution of the display is finite, which limits the
resolution of the visualized scene. Further, any practical eye tracker has a finite accuracy,
resulting in images that are slightly different from the ideal ones. To our knowledge, an
analysis of these effects on the scene visualization has not yet been performed for multi-
viewpoint systems. Previous analyses that very slightly resemble such an analysis can be
found in [Vais99] for augmented reality systems with head-mounted displays, and in the
area of camera calibration [Tsai87], where triangulation errors of calibration points in 3-D
space (similar to our scene points) are derived on the basis of 2-D image feature locations
(similar to points in the multi-viewpoint images). We will examine the effects of eye tracker
errors in detail, based on [Rede00].

Further, in any practical system there is a delay between the eye-tracker measurement, the
synthesis of the multi-viewpoint images and finally, the observation of the images by the
viewer. In augmented reality systems, where the viewer observes the visualized scene
together with the real environment using a head-mounted display, the latency errors are
more annoying since they are present in the virtual part of the scene, but not in the real
scene. In this area the effects of latency have been studied and are counteracted by special
low-latency rendering techniques [Pasm99]. We will study the effects of latency in multi-
viewpoint systems, based on our results for eye tracker errors.

In section 5.2, we will consider the general case for the generation of multi-viewpoint
images. In section 5.3 we analyze the geometrical errors in the visualization due to eye-
tracking errors in general. The other two causes of visualization errors, the resolution of the
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display and the rendering latency, are described as well using the former analysis. In section
5.4 we validate our theoretical findings by an extensive experiment with human subjects.
Finally, section 5.5 concludes the chapter. In all sections we will use the notation from
Appendix A.

5.2 Generation of multi-viewpoint images
In section 5.2.1, we will derive the correct algorithm for the generation of the multi-
viewpoint images. This algorithm provides scene visualization without any geometrical
errors, and is simple at the same time. However, a few practical challenges exist for
through-the-window systems due to the display size. In section 5.2.2 we will examine these
challenges and provide a solution by means of manipulating the visualized scene manually.

5.2.1 Image synthesis for viewpoint-adaptive visualization
Figure 5.2 shows the stereo display, with in the center the display reference frame OD, with
the meter as unit (not pixels). We assume that the display is perfectly flat and thus occupies
the zD = 0 plane. The OI reference frame is the pixel frame of the display with continuous
coordinates xI and yI (see Chapter 2 and Appendix A for our notation).

OD
xD

scene point P

display

QL

QR

EL

ER

viewer

mL

mR

yD

zD

OI

xI

yI

Figure 5.2 Viewpoint-adaptive visualization of a 3-D scene point.

For each scene  in the model, we construct the two light rays mL and mR, which leave from
this point and enter the viewer’s eyes. These rays go through the pupils EL and ER (optical
centers of the eyes). To construct mL and mR, we only need the exact position of the pupils.
Since no information is needed about the retinas of the eyes, this application does not need
information about the gaze direction. This construction can be done independently for each
eye and thus we will discuss only one by omitting the L or R subscripts. After some basic
geometrical calculations, we find for the coordinates of Q:
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The superscripts denote the coordinates in the display frame OD, see Appendix A. We
always have E zD > 0 and QzD = 0. For points behind the display we have PzD < 0 and for the

points in front of the display have PzD > 0. If the pixels of the display have size sdx and sdy,
then the (continuous) image coordinates xI, yI of Q are:
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Here the Nx and Ny denote the size of the display in pixels. If we e.g. round off the
continuous image coordinates to integer pixel coordinates, we may copy the luminance (and
color) of scene point P from the scene model into the left and right image at the positions
QL and QR, respectively. For Lambertian (diffuse radiating) scene surfaces, the luminances
at QL and QR are the same. For specular reflecting surfaces, they may differ. If this
construction is done for all scene points P and for both eyes, we obtain a stereo pair of
multi-viewpoint images that enable visualization of the scene without any geometrical
distortion.

The construction (5.1) and (5.2) for a single eye is very similar to, but not exactly the same
as image formation in a normal camera. The eye and the display in our construction play the
role of the optical center and the projection plane in a camera. The major difference is the
position of the optical center: in a normal camera, it is on (or very near to) the z axis, but in
Figure 5.2 it may be at any position. This has been recognized for stereo systems [Grin94,
Kutk94], and multi-viewpoint systems on the basis of interpolation [Konr99, Ohm98] and
extrapolation [Rede97b].

Generally, three phenomena arise during the construction of the multi-viewpoint images:

 • QxI and Q yI are not integers.

 • Multiple scene points project to the same pixel.
 • A pixel never gets assigned a luminance, since no scene point is projected to it.

In the area of rendering normal 2-D images from 3-D scene models, which is standard
computer graphics, these phenomena have been dealt with extensively. However, we will
examine their geometric effects in the context of the 3-D visualization in multi-viewpoint
systems.

In the first case, geometrical errors due to pixel discretization can be made arbitrarily small
by first constructing a high-resolution image followed by extracting a normal-resolution
image by low-pass filtering and subsampling. This produces at most slight loss of detail due
to blurring.

The multiple projection case is exactly the same as in normal image formation. We assume
that the original scene consists of opaque surfaces only. Then we project the scene point that
is closest to the viewer or, equivalently, has largest PzD . This conforms to the fact that
opaque objects occlude each other and that only the closest object remains visible.
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In the last case, “holes” are visible in the displayed scene. Even when the scene is captured
by a method with a large number of cameras and the scene model is very complex, the
viewer may always take a viewpoint for which the scene model does not contain enough
information. This is inevitable. However, in general the scene model should contain those
parts of a scene the viewer is interested in and then the holes are automatically avoided.

Much smaller but more annoying holes arise in the following situation. Scene models exist
that contain only of a cloud of points P, without any surfaces defined between them (e.g.
image-based models as used in Chapter 6). In principle, such a scene is not visible at all
since points are infinitely small and thus have zero area. If all points are projected to pixels,
they implicitly “gain” some surface and they are visualized. This may lead to a large number
of holes with sizes in the order of one or a few pixels. Such holes are very annoying, but can
be avoided easily by interpolation of nearby pixels [Rede97b].

5.2.2 Manual scene manipulation
If large changes in viewing angle are needed, e.g. to see the back of the scene, in real-life
we can walk around objects. In “through-the-window” based video systems, this is not
possible. The viewing position and direction are constrained, since the lines of sight from
viewer to scene must always intersect the display.

Figure 5.3 shows a worst-case example, in which a viewer is looking at a scene that is
orders of magnitude larger than the display. Walking around the scene means that the lines
of sight do no longer intersect the display and thus, the scene visualization is lost.

Display Viewer

Scene

Eye lens focus

Convergence of eyes
300 m

1.5 m

70
cm100 m

Walking

Manual rotation

Figure 5.3 Walking around a large visualized scene cannot be done, but it can be simulated by
manually rotating the scene.

This can be solved by allowing for manual rotation, translation and scaling of the scene
model with respect to the display:

P SV P OD

model

D model D

model
σ

σ
σ σ σ= + (5.3)
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Here S is a scale factor, while V
model

D

σ
σ is a rotation matrix and Omodel

Dσ is a translation vector as

defined in Appendix A. We can now simulate walking around in two ways. The most direct
method is to allow the viewer to rotate the scene model manually. The second method is to
make the scene smaller by manually scaling it to the size of the display, and then to translate
it to the center of the display. After that, head movement can again be used, which now
provides almost 180° degrees of viewing angle. Although the visualization is now correct
only up to a scale factor, the increased motion parallax possibility and scene overview
features seem very useful. Additionally, all scene objects now appear approximately
centered in the display. Then, on average, the eyes will converge to the depth of the display.
For displays that do not provide the eye lens accommodation cue, this minimizes the
accommodation-convergence conflict as described in Chapter 1 (in Figure 5.3 this conflict
is quite large).

5.3 Geometrical errors
If multi-viewpoint images are generated as discussed in section 5.2, several causes remain
that may contribute to geometrical errors in the scene visualization. The display has finite
resolution, it may not be perfectly flat due to intended curvature or (small) deformations,
and the thickness and type of the display front may cause light rays to refract slightly before
travelling into the air. Further, the measurements from the eye-tracker may not be exact.
This can be because the accuracy of the tracker itself is finite, or due to discretization of the
measured eye positions by a practical implementation of the visualization algorithm. Also
the calibration between display and tracker (transformation of coordinates from tracker to
display) may not be correct. When rendering latency is present in the system, the images are
no longer synthesized based on tracker data from the present, but on data from some
moment in the past.

In this section we will first analyze the effect of general eye-tracking errors on the
visualization. Secondly, we will relate these results to the resolution of the human eye and
display. A simple bound on the allowed eye-tracking errors will be formulated, below which
the eye-tracking errors result in unobservable visualization errors. Finally, a bound will be
derived for the maximum system latency. In these sections we assume that the calibration of
display and tracker is performed without error, and that the display is perfectly flat and does
not refract the light rays it emits.

5.3.1 Eye-tracking errors
Eye-tracking errors cause two effects in the visualization of each scene point, illustrated
quite exaggeratedly in Figure 5.4:

 • The observed scene point $P does not have the same position as P.

• The two lines of sight do not intersect, but cross with a minimal distance |∆D| in
between.
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Figure 5.4 Two effects of eye-tracking errors (compare with Figure 5.2).

The first effect produces a geometrically distorted scene. The second effect never occurs
when looking at real objects. It may be partly responsible for headaches caused by stereo
systems, although we found no research related to this in literature. We assume that if |∆D|
is small, the brain can still merge the two lines of sight and that it observes the

point $P centered on the vector ∆D. The vector ∆D is similar to the intersection error defined
at the end of section 2.5.4, which is now encountered by the human brain.

In Figure 5.4, all points without hat refer to the situation as seen by the visualization
algorithm. All points with hat refer to the actual situation. The error ∆P is defined as the

vector from P to $P . The ∆D is defined as the smallest vector that can be found  from a point
on $mR to a point on 

Lm̂ , similar to the definition in section 2.5.4. The errors ∆EL, ∆ER are

defined as the vectors from EL, ER to $E L
, $E R , respectively.

The ∆P and ∆D are non-linear functions of ∆EL, ∆ER, EL, ER and P. For the analysis, we
introduce (see Figure 5.5) head position H, located midway between the eyes, a line mH and
display intersection point QH. Further we introduce the inter-eye distance deye, the binocular
viewing angle α and plane Φ, which contains the lines mL, mR and mH and consequently, the
points EL, ER, H, QL, QR, QH and P. Finally, we introduce three new reference frames OL, OR

and OH, whose origins are located in the display at QL, QR and QH, respectively.

The yL, yR and yH axes are all defined perpendicular to the plane Φ, which yields
yL = yR = yH. The zL, zR and zH axes are contained in the lines mL, mR and mH, respectively,
and point in the direction of the viewer. For right handed references frames, the three x axes
are then fixed and lie within the plane Φ, orthogonal to the lines of sight mL, mR and mH as
shown in Fig. 5.5.

We will decompose the tracking errors ∆EL, ∆ER in OL and OR, respectively. Assuming that
the six components are small, we can linearize their effects, analyze these separately and
obtain the total result by superposition. For the coordinates of the eye positions EL, ER, the
scene point P and the components of visualization errors ∆P and ∆D, we will use whatever
frame is most appropriate. The superposition of all errors requires in the end that all
coordinates are transformed to the same reference frame, which will be OH.
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Figure 5.5 Head position and reference frames for the analysis of eye-tracking errors.

Figure 5.6 shows the three components of the left eye error and their effects. The ∆EL in the
+xL direction produces a small ∆P within Φ, in the direction of -zR. No ∆D is produced.
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Figure 5.6a  The effects of left-eye tracking errors in the xL direction.
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Figure 5.6b  The effects of left-eye tracking errors in the yL direction.
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Figure 5.6c  The effects of left-eye tracking errors in the zL direction.

The size of ∆P is related to α and to the quotient of the lengths of mL in front of and behind
the display (viewer-display and display-point distance respectively). After some calculation
we find:

∆ ∆P
P

E
Ez

z

L
z L

xR

L

L

L=
1

sinα
(5.4)

Small ∆EL in the +yL direction produce small ∆P and ∆D perpendicular to Φ in the direction
of -yL (or -yR or -yH). Their sizes are:
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Any ∆EL in the zL direction does not effect the visualization at all, since it has no effect on
the line of sight mL.. Similarly, we find for the visualization errors due to the right eye errors
∆ER:
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To allow for superposition of the visualization errors, we must transform all coordinates on
the left-hand sides of (5.4) to (5.9) from the OL and OR frames to those of OH. Figure 5.7
shows the relation between the coordinates.

α
∆xL

∆xH

∆xR

∆zH

∆zR∆zL

yL = yR = yH

Figure 5.7 OL, OR and OH coordinates.

We assume that the OH coordinates are centered in between the OL and OR coordinates. If
the viewer looks at P and his nose points towards P, the lines mL and mR have equal length
and this holds true. For other head orientations this is generally not true. For small α, the
deviations are very small and can be neglected. For α we find:

α α≤ ≈
−
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H P
eye

z zH H
(5.10)
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We approximate the inter-eye distance by deye ≈ 7 cm. Then, if the distance between the
viewer and point P is in the order of 1 m or larger, we find α < 0.07 rad or smaller. Thus,
we are allowed to use the symmetric situation in Figure 5.7 and find, for example:
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For small α, we can apply:
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Further, we use the approximation:
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If we apply (5.11) and similar rotational transforms, (5.12), and (5.13) to both the left-hand
and right-hand sides of (5.4) to (5.9), we obtain after superposition:

( )∆ ∆ ∆D
P

H
E Ey

z

z L
y

R
yH

H

H

H H= − (5.14)

and

( )

( )

∆
∆
∆

∆ ∆
∆ ∆
∆ ∆

∆ ∆

∆ ∆

P

P

P

P

H

E E

E E

E E

E E

E E

x

y

z

z

z

L
x

R
x

L
y

R
y

L
z

R
z

L
z

R
z

L
x

R
x

H

H

H

H

H

H H

H H

H H

H H

H H

















=
+
+
+

























+
−

−

























1

2
0

2

2

α

α

(5.15)

We assume that the eye-tracking errors have uncorrelated, zero mean components, with
variances that are possibly different in xH, yH and zH directions but equal for left and right
eyes. We denote the eye-tracking errors by σ∆E;x, σ∆E;y and σ∆E;z. Then all sums on the right
hand sides of (5.14) and (5.15) are uncorrelated with respect to each other, as well as the
left hand components. This results in:
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As just deduced, α is in the order of 0.1 rad. For eye trackers with isotropic errors, (5.16)
can be approximated to:
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Where σ∆E refers to all spatial directions. Many tracking algorithms produce spatially
anisotropic errors. For the commercial tracker from [Orig] and the experimental tracker in
[Rede97e], σ∆E;x and σ∆E;y have equal magnitude, but the errors in the  z direction  σ∆E;z are
about 5 times larger. However, if σ∆E;z < 2/α σ∆E;x, then (5.16) still approximates:
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For the aforementioned trackers, this equals (5.17), since their errors are isotropic in the xH

and yH directions.

For complexity reasons, multi-viewpoint systems may adapt only to one or two dimensions
of viewer movement. For example, in a system based on image interpolation, the system
adapts only to viewer motion in the xH direction. The system assumes that the viewer
remains at some specific yH and zH position. This system functions the same as a fully
adaptive system that suffers from severe eye tracking errors, namely the measured yH and zH

positions are fixed. All the movements of the viewer around the prescribed y and z position
then define both σ∆E;y and σ∆E;z, which will be substantially larger than σ∆E;x. In these cases,
we do have σ∆E;z > 2/α σ∆E;x, and (5.16) can be approximated to:
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Also, the tracking errors may be effectively enlarged by discretization of the measured eye
positions by a practical implementation of the rendering algorithm. In Chapter 6 we will
deal with such multi-viewpoint systems as specific cases of the generic algorithm defined in
section 5.2.
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5.3.2 Resolution of the human eye and the display
In this section we will derive a bound below which eye-tracking errors yield unobservable
visualization errors.

A rule of thumb for all displays is that we must keep a distance from the display of a few
times its size. If we observe this rule, the system resolution is limited by the eye instead of
by the display. Roughly speaking, the spatial resolution of the eye is below 1/30th of a
degree [Wand95], which is αeye ≈ 6x10-4 rad.

Figure 5.8 shows a visualized point P and two cones, each with its apex at an eye pupil and
both aimed at P. These cones represent the light rays that are used to observe point P. The
angular width of the cones is aeye, representing one unit of spatial resolution of each of the
eyes.
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QR
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α

H

H

Wx,y

Wz

αeye

Figure 5.8 The resolution of the eye.

All ∆P that shift P to another position within the intersection of both cones are not visible.
Since  αeye << α, the width of each cone around the intersection can be assumed constant.
Applying (5.13) we find for the width Wx,y of both cones in the xH and yH direction:

( )W H Px y eye
z zH H

, ≈ −α (5.20)

For small α, the width of the intersection equals that of the cones. For the length Wz of the
intersection we find:
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The requirement that ∆P lies somewhere within the intersections of the cones can then be
formulated as:
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The σ corresponding to uniformly distributed errors within some interval, is equal to the
length of the interval divided by √12. In this way, we can rewrite (5.22) as:
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This enables us to combine (5.23) with (5.18), (5.19) and (5.10) into:
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For points far behind the display, we have P z H → −∞ and find:
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For head positions in the order of 1 m from the display, visualization errors remain
unobservable when the eye-tracking errors are smaller than 0.2 mm in the x and y directions.
The eye-tracker error in the z direction is not restricted.

As discussed in section 5.2.2, it is advantageous to visualize the scene in the center of the
display. Then P z H is small compared to H zH and we obtain:
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(5.26)

It must be noted that each point in the scene model has its own, unique OH reference frame
and coordinates. Therefore, the xH , yH and zH coordinates in (5.26) refer to different
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directions for different points. A simple and absolute safe bound can be obtained by taking
the minimum of the three bounds over all points. In this case (5.26) reduces to an isotropic
bound that is the same for all points:

σ
α

∆E
eye

z

z

H

P

H

H
<

2

6
max

(5.27)

This bound is quite over-restrictive for the zH component of the eye-tracking error for all
points, and over-restrictive for all components of points closer to the display than PzH

max
.

For scene points about PzH

max
= 15 cm around the display (for example a teleconferencing

application with human heads as scene), and a viewer distance of about 1 m, we obtain
σ∆E < 1 mm. Via (5.26) we observe that the actual allowed eye-tracking error in the z
direction is about 30 times larger.

5.3.3 Rendering latency
We will derive a simple and safe bound for rendering latency, below which artifacts cannot
be observed. A rendering latency of t seconds has only effects when the viewer is changing
his viewpoint. In that case, the images shown on the display correspond to a viewer position
from t seconds in the past. Effectively, the latency produces errors equivalent to those of
eye-tracking errors with size t times the speed of the viewer. If we denote the speed of the
viewer by the vector v, we find:

∆E vtequi latency− = (5.28)

Assuming a uniform distribution of viewer motions v, we use the 1/12 just as in (5.23) and
define:

σ∆E equi latency v t; | |− =
1

12
(5.29)

This enables us to use the equivalent errors in (5.27) properly. We then obtain a bound on t
and v:
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(5.30)

In [Pasm99] it was indicated that the latency should not exceed about 40 msec for head
mounted display (HMD) systems. Equation (5.30) shows that the latency effects become
less visible when the head-display distance HzH rises and the display-object distance

HzP decreases. Since this holds clearly for our system compared to the HMD system, we
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assume that in our application larger latencies are allowed. This conclusion must be drawn
with care, however, as (5.30) may not hold for HMD systems in which the display is
attached to the viewer.

For a viewer about 1 m from the display and a scene with a size of about 15 cm, we find that
|v|t < 4 mm (in approximation). With a system latency of t = 40 msec, the maximum speed at
which the viewer may move his head is |v|max ≈ 10 cm/s according to (5.30). This speed is in
the order of normal head movements, but certainly people are able to move faster than this.
This suggests that considerable effort has to be put in low latency rendering techniques for
adaptive multi-viewpoint systems, as was done earlier for HMD systems [Pasm99].

5.4 Experiments
The goal of our experiments is to test the validity and applicability of the general
visualization algorithm defined in section 5.2, and the bounds derived in section 5.3 for eye-
tracking and system latency. For this we have performed a subjective test with nine different
persons. Next we will discuss our test environment, followed by the subjective tests for the
generic visualization algorithm and the eye-tracking and latency errors.

5.4.1 Test environment
Figure 5.9 shows our test environment. We implemented the general visualization algorithm
in OpenGL, running on a Silicon Graphics Octane computer. We used a synthetic scene
consisting of a cube with dimensions 12x12x12 cm, with a planar background about 1.5 cm
behind the cube. The scene was positioned such that the cube was centered in the display.
Both cube and plane were textured with a colored checkerboard pattern. Stereoscopic
images were generated and shown on a 21” display with a (stereo) frame rate of 60 Hz and a
resolution of 1280x512 pixels (the monitor was set in the so-called stereo mode that reduces
the vertical resolution by a factor of two). The actual frame rate of synthesized images was
about 30 frames/sec, thus below the display frame rate. LCD shutter glasses [Ster] were
used to show the left and right images to the left and right eye of the viewer, respectively.
The glasses were synchronized with the display via a wireless infrared system.

The eye tracking was done with a commercially available DynaSight 3-D sensor [Orig],
which has an absolute accuracy of 2/2/8 mm in the x/y/z directions and provides about 30
measurements per second. The tracker measures the head position H, defined exactly in
between the eyes. The eye positions were derived by adding or subtracting half the inter-eye
distance deye to or from the x coordinate found by the tracker. This assumes that the viewer
does not rotate his head along the y and z axes. We used a fixed inter-eye distance of 6.5
cm. The tracker device was mounted on top of the display and centered manually. The
measurements were transformed from tracker coordinates to display coordinates, involving
the rotation around the x axis and vertical translation between display and tracker, see
Figure 5.9. These parameters were measured by hand. Any additional tracking errors due to
possible misalignment of the tracker with the display were not taken into account.
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Figure 5.9 The test environment. The head tracker is on top of the display, the infrared transmitter for
the LCD shutter glasses is on top of the tracker.

Before the subjective tests, the system performance was verified by a measurement of the
geometry of the cube. The measurement was done in the way normal objects are measured,
by using the system and holding a normal ruler beside the virtual cube. The size of the cube
was found to be 11.8x12.7x12.6 cm. The manual measurement was only possibly with close
viewpoints of about 50 cm from the display, due to the length of the human arms. The size
of the cube was found to be invariant for all these close viewpoints in a range of about 90°
around the display. The measurement in the depth direction was made possible by
temporally repositioning the scene completely in front of the display, as discussed in section
5.2.2. This enables us to place the ruler next to the side of the cube without physically
interfering with the display. The slight differences in size from the expected 12x12x12 cm
can be due to the following. The pixel aspect ratio of the display in stereo mode was not
exactly known, but approximated by two. Further, although no random eye tracker errors
were noted, the tracker or the display-tracker calibration might introduce systematic
tracking errors. Finally the thickness of the CRT display was about 0.5-1 cm, causing light
rays to refract slightly from their intended paths.

a) -5, 0, 5 b) 10, 5, 15

Figure 5.10 Synthesized images for a viewer reading this thesis, with x, y, z positions given in cm
relative to the image center.

Two left images of the generated stereo pairs are shown in Figure 5.10. When the reader
takes a close look upon these figures with one eye closed and the other eye at the given
coordinates, he observes the scene with correct geometry. The viewpoint coordinates for
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correct scene visualization have been adapted to the printing scale in this thesis. Even
though the figures are monoscopic and do not provide viewpoint adaptivity, the square
geometry of the cube can be observed very well. The effect of eye-tracking errors can be
observed by moving slightly, causing the actual viewing coordinates to differ from the
assumed coordinates.

5.4.2 Evaluation of the visualization algorithm
We evaluated the visualization algorithm by a subjective test with nine people with normal
or corrected-to-normal (glasses) vision. All of them were engineers with considerable
knowledge about the system. Each experiment took about 20-25 minutes. At the start, each
viewer sat 1 m behind the display and confirmed that he could observe the stereo and
motion parallax cues. We first asked some questions about the qualitative aspects of the
visualization. Then tests were performed to see which position of the scene they preferred
(centered in the display or e.g. behind it as discussed in section 5.2.2), and whether the
stereoscopic and viewpoint-adaptive visualization contributed to the viewer’s comfort and
3-D experience of the scene.

General viewing quality
Qualitatively, all viewers mentioned that the sensation was pleasant. Everyone could see
and describe the 3-D content of the scene (a cube in front of a plane). Several viewers
mentioned that the cube was a bit stretched in both the y and the z direction, which is
confirmed by our manual measurement. All viewers immediately observed that the LCD
shutter glasses suffer from some cross-talk between left and right views. All of the viewers
experienced this as annoying, either right from start or later on during the experiment.
Further, the synthesized images were not rendered in anti-aliasing mode to allow for-high
speed rendering. Especially due to the low vertical image resolution, this led to some
annoying jittering of texture edges on the checker board patterns. This was observed
unanimously. Similarly, all viewers experienced the system latency when changing
viewpoint fast. They said the effect resembled watching a cartoon, or being drunk. Although
it made the scene less realistic, it was not found annoying.

Position of the scene
The viewers were provided with the possibility to change the depth position of the scene
manually until maximum viewing comfort was established. All viewers preferred a scene
that was just behind or centered in the display plane. If the scene was positioned outside (in
front of) the display, an impressive but fatiguing 3-D effect was experienced. The scene
could not be positioned very far outside the display, since then it would fall outside the
visibility region (see Figure 1.9 in Chapter 1). If the scene was positioned about 25-50 cm
behind the display, most viewers had difficulty keeping the scene in focus, and then could
no longer observe the scene in stereo. This is a typical effect of the accommodation-
convergence conflict as shown in Figure 1.6 in Chapter 1. In this case, the motion parallax
provided by the system was experienced as unnatural actual motion of the scene; as if the
scene were attached to the viewer. Several viewers noted that with the scene positioned far
behind the display, the system latency was much more pronounced, making them a bit
dizzy.
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Stereo or mono visualization
The effect of the stereo cue on the observed scene was tested as follows. Setting deye = 0
immediately provides the viewer with monoscopic visualization while maintaining motion
parallax. At first, all viewers preferred the more sensational stereoscopic view. However,
everyone made clear that the monoscopic view was far less fatiguing, and preferred this
mode for longer viewing periods. This can (at least partly) be due to the annoying cross-talk
of the LCD shutter glasses. The 3D-ness of the scene was less in mono viewing mode, but
not absent, since the motion parallax cue was still present. When positioned at 2 m from the
display, all viewers rated the stereoscopic visualization as comfortable as the monoscopic
visualization. All but one viewer still experienced the stereoscopic depth cue clearly from
this distance.

Motion parallax
We tested the effect of the motion parallax cue, the feature that is introduced by multi-
viewpoint systems, by switching it on and off in a number of ways. If switched  completely
off, the system reduces to a non-adaptive stereo system. All viewers strongly disliked this
after having experienced the motion parallax cue for some time. The scene still contains
some depth, but any movement results in large, observable geometric distortions, described
by our viewers as “the scene is elastic”. It appears that viewers can see the distortions much
better when they just have experienced the adaptive visualization that the multi-viewpoint
system offers.

Next to turning off all adaptivity, we also turned on adaptivity only in xy directions,
discarding the systems’ adaptivity in the z direction of viewer motion, and finally turning on
adaptivity only in the x direction. In both the xy and x case, the non-adapted components of
the viewer position were fixed to the last fully adapted measurement before turning it off. In
the xy case, the viewers could notice deformations in the scene when moving back and
forth. Despite of the absence of adaptivity to viewer movements in depth, a significant range
of movement was possible before the deformations became annoying (about 25% of the
viewer-display distance). When we further decreased the system’s performance to x
adaptivity only, all viewers saw a minor decrease in motion parallax. When they stood up
and sat down again, they described the deformations as quite severe, but sitting in a chair,
the vertical viewer motion is usually very little and they noticed hardly any effect.

From this we may conclude that enhancing a stereo system by viewpoint adaptivity only in
the x direction yields the largest increase in performance. Adding adaptivity to viewer
motion in the y direction is useful when it is expected that the viewer will actually use this
direction of freedom. Finally, adding the viewpoint adaptivity in the z direction results in a
fully adaptive multi-viewpoint system. This outperforms the xy system only if the viewer
moves his head back and forth more than about 25% of the viewer-display distance.

Geometrical correctness of the scene
To test the geometrical correctness of the scene, we let the viewers measure the size of the
cube using a ruler as discussed in section 5.4.1. We also asked them to guess the distance
between the cube and the background, without the aid of the ruler. Table 5.1 shows the
results.
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Viewer
Size

x
Size

y
Size

z
Distance

cube-background
1
2
3
4
5
6
7
8
9

11.8
11.5
11.5
11.8
11.5
11.8
11.9
11.8
11.7

12.5
12

12.5
12.7
12

12.6
12.7
12.5
12.5

12.7
10
12

12.6
12

12.8
13

12.5
12.8

1.5
0.5
1
3

1.5
 1
2
1

1.5

µ
σ

11.7
0.2

12.4
0.3

12.3
0.9

1.4
0.7

target size
author calibration

12
11.8

12
12.7

12
12.6

1.5
-

Table 5.1 Scene geometry assessed by the viewers in cm. The cube size was measured with a ruler,
while the distance between cube and background was guessed.

The viewers provided results in mm or in half centimeters. The mean values and standard
deviations of the cube dimensions show that the geometry of the observed cube was
consistent within the group of viewers up to a few mm. The results are close to the target
values, apart from the systematic deviation also noted by our own calibration measurement
in section 5.4.1.

5.4.3 Evaluation of eye-tracking and latency errors
We examined the effect of eye-tracking noise on the scene visualization by deliberately
adding noise to the measured eye positions. The viewers were positioned at three different
viewing distances of 0.5, 1 and 2 m. Uniformly distributed noise was added to the measured
viewer position, independently for both eyes and for the x, y and z coordinates of the eyes.
The noise interval was the same for all these six coordinates. The interval was set to zero at
the start, but we slowly increased it until the viewer could just notice the effects. Table 5.2
shows the results.

It must be noted in this experiment that the absence of anti-aliasing in our rendering
algorithm continuously produced jitter on the display. All viewers explained that it was
quite hard to distinguish the (just noticeable) eye-tracker noise from this jitter. This may
explain the large variances compared to the mean values over the group of viewers.

If (5.27) is rewritten as a bound for uniform intervals instead of standard deviations, we
obtain:

max

2
2

H

H

z

z
eye

P

H
E

α
<∆ (5.31)
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With αeye ≈ 6x10-4 and 
max

HzP ≈ 8 cm, we find |∆E| intervals of 2.5 mm, 10 mm and

40 mm. Apparently the viewers are a factor two to four more critical than we expected.

Viewer
Viewer
at 0.5 m

Viewer
at 1 m

Viewer
at 2 m

1
2
3
4
5
6
7
8
9

1.2
4

1.8
3.2
0.5
1.4
0.7
0.5
1.8

2.7
3
3

4.2
0.8
2.6
2.3
9.8
2.5

3.1
2

14
27
6.3
6.0
12
2.5
9.0

µ
σ

1.7
1.2

3.4
2.5

9.1
7.9

Table 5.2 Noise on the eye-tracker measurements that produce just noticeable artifacts. The noise is
uniformly distributed in the interval given in mm. The noise was added independently to the x, y and z
positions of both eyes.

In section 5.3.2 it was found that the bound on the z component of the eye-tracking error
was over-restrictive. We verified this by applying noise to the z component only. Table 5.3
shows the just noticeable interval of uniform noise applied isotropically to all three
coordinates versus  applied to only the z coordinate. The results differ significantly: by a
factor of about five; smaller than the expected factor 30 via (5.26).

Viewer Isotropic z only

1
2
3
4
5
6
7
8
9

2.7
3
3

4.2
0.8
2.6
2.3
9.8
2.5

23
7.8
25
17
14
6.3
4.5
59
9.8

µ
σ

3.4
2.5

18
17

Table 5.3 Effects of isotropic noise (from Table 5.2) versus noise in only the z direction. The noise is in
mm on the eye-tracker measurements that produce just noticeable artifacts. The viewing distance was
always 1 m.

Further, in section 5.3.2 we used both uniform interval lengths and standard deviations σ,
which were converted by the factor √12. Table 5.4 shows whether this conversion is also
valid for visual artifacts. From the results we observe that uniform and Gaussian noise
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produce similar amounts of visible artifacts, determined only by σ. Thus the conversion is
valid.

Viewer σ
uniform

noise

σ
Gaussian

noise
1
2
3
4
5
6
7
8
9

0.8
0.9
0.9
1.2
0.2
0.8
0.7
2.8
0.7

1.3
1.2
0.5
1.8
0.2
1.9
0.8
2.7
1.3

µ
σ

1.0
0.7

1.3
0.8

Table 5.4 Effects of uniform and Gaussian noise, in mm on the eye-tracker measurements that
produce just noticeable artifacts. The viewing distance was always 1 m. The σ of the uniform noise is
derived from Table 5.2 by dividing by √12.

To verify the bound (5.30) on the system latency, the viewers were positioned at 0.5 and
2 m and asked to move their heads in circular and ping-pong patterns at such a pace that
they could just notice any geometrical scene deformation. The movement speed was
measured very roughly by hand. Table 5.5 shows the results.

Viewer
Viewer
at 0.5 m

Viewer
at 2 m

1
2
3
4
5
6
7
8
9

-
10 cm/s
10 cm/s

-
3 cm/s

20-30 cm/s
10 cm/s
10 cm/s
15 cm/s

-
1-2 m/s

∞
1-2 m/s
10 cm/s

∞
50 cm/s
20 cm/s

-

Table 5.5 Maximum head movement speed that still does not produce visible artifacts due to system
latency. The speeds are measured very roughly by hand. A “-“ indicates that no valid measurement was
found. An ∞ means that no latency was observed at all.

The viewers found this task quite difficult. Now and then they reported that they saw
artifacts (scene elasticity or “cartoon” like motions) at all times, or none at all. None of the
viewers experienced the artifacts as annoying.
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For the given viewing distances and 
max

HzP ≈ 8 cm, and (5.30) then predicts that |v|t

should be smaller than about 2 mm and 3 cm for viewers at 0.5 and 2 m, respectively. The
latency of our tracker and rendering algorithm was not exactly known, but approximated as
follows. The measurement rate of the tracker is about 30 Hz, which gives a delay of about
33 msec. The rendering algorithm was capable of following the 60 Hz frame rate of the
display, introducing 16 msec delay. In total, this gives a system latency of at least 50 msec.
This results in head speed bounds |v| smaller than 4 and 60 cm/s respectively. By order of
magnitude, Table 5.5 is consistent with this prediction.

5.5 Conclusions
We derived a general image synthesis algorithm for multi-viewpoint systems with
geometrically correct 3-D scene visualization on stereo displays. The algorithm renders two
multi-viewpoint images from a 3-D scene model. The images are updated continuously to
the current viewpoint of the viewer. The algorithm allows for any viewpoint, in contrast to
many current algorithms, which provide only intermediate views with respect to a certain
stereo camera setup (used for acquisition of the scene model). We argued that, in addition to
the look-around feature provided by the visualization algorithm, manual adjustment of the
position, orientation and scale of the scene are useful features. They allow the viewer to
(simulate a) walk around a scene, to increase the effective  motion parallax and to minimize
the accommodation-convergence conflict.

We analyzed the effect of eye-tracking errors on the visualization. Using the finite
resolution of the display and the human eye, a simple bound was found on the eye-tracking
error. Below this bound, visualization errors cannot be observed. Current commercial
tracker devices meet this bound, but it must be observed that the translation and orientation
of the tracker with respect to the display must be calibrated up to the same accuracy as the
tracker errors.

Using the eye-tracker bound, we derived a simple bound for the system latency between
eye-tracker measurement and the displaying of the synthesized images. The bound limits the
product of the system latency and the allowed viewer mobility. For reasonable latencies of
e.g. 40 msec, the allowed viewer mobility is in the order of 10 cm/sec. Although this speed
is in the order of normal head movements, people may move faster than this now and then.
Therefore, low latency rendering techniques such as used in Head Mounted Display virtual
reality systems [Pasm99] might also prove very useful in adaptive multi-viewpoint systems.

A subjective test with nine persons was performed to validate the general visualization
algorithm, the theoretical bounds on eye tracking errors and system latency. Most
importantly, we asked viewers for their preferences about scene position and viewing mode
(mono, stereo or viewpoint-adaptive). For the test, the visualization algorithm was
implemented on a computer platform with real-time rendering capabilities. A synthetic
scene was shown on a stereo PC display on the basis of LCD shutter glasses. Head tracking
was performed with a commercial device.
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The geometry of the visualized scene was found to be fully correct. The viewers were able
to measure the geometry of a synthetic scene with a deviation of only 5% from the true
values. This accuracy is remarkable since a normal ruler was used on a virtual object
positioned in front of the display. The theoretical bound on eye-tracking errors was also
correct. For this we deliberately added noise to the eye tracker data and measured which
amount of noise the viewers could just notice. We similarly checked the bound on system
latency, and found it to be correct too.

All viewers preferred the viewpoint-adaptive system to a non-adaptive stereoscopic system.
Starting with the non-adaptive stereo system, adding adaptivity in the x direction only yields
the largest increase in subjective system performance. Especially for seated viewers, the
additional gain of adaptivity in the y direction is less. Finally the effects of adding adaptivity
in the z direction was only noticeable when the viewer motion in the z direction was more
than about 25% of the viewer-display distance.

Using a fully adaptive system (x, y and z adaptivity), all viewers evaluated stereo rendering
as more spectacular than mono rendering. However, for viewpoints close to the display
(~1m), viewers considered that the cross-talk between left and right images was very
annoying and that it made watching fatiguing. Most viewers therefore indicated that for
longer viewing periods they would prefer the monoscopic rendering mode. For further
viewpoints (~2m), all viewers preferred the stereo mode. In this case, the left and right
images were more similar and the cross-talk did not provide any annoying artifacts.

All viewers preferred a scene centered in the display or slightly behind it. At least two
theoretical reasons may contribute to this. First, for these scene positions the
accommodation-convergence conflict is (almost) minimized. Secondly, the effects of eye-
tracking errors and system latency decrease with the distance between scene and display.

In general we may conclude that the introduction of viewpoint adaptivity in stereo display
systems is currently not only possible, but even desired. There are several directions for
future research to improve the performance of the system we discussed. The geometrical
correctness of the visualized scene is still limited by the system latency, introducing
“elastic” scenes when the viewer moves too quickly. The results from fast rendering
techniques in Head-Mounted Display systems [Pasm99] may provide a solution for this.
The scene geometry would also improve if accurate calibration of the eye tracker with
respect to the display was done. This is an open issue at the moment. In terms of the display,
several factors can be improved. First, by minimizing the thickness of the display glass
between the light source (e.g. phosphors in a CRT) and the air, the effects of refraction
between glass and air are minimized, which improves the scene geometry. Further, current
displays still cannot provide the accommodation cue for the eye, resulting in the
accommodation-convergence conflict. This is one of the reasons why viewers prefer scenes
that are visualized in the vicinity of the display, instead of before or behind it. Finally, our
test showed that it is most important to diminish the cross-talk between left and right views
of a stereo display to enhance subjective system performance.



Chapter 6 

PANORAMA real-time 3-D visual
communication system

6.1 Introduction
In this chapter we will describe the 3-D visual communication system designed and built in
the European PANORAMA project [Ohm98, Pano98a, Pano98b]. The PANORAMA
system is a two-way communication system, consisting of two identical adaptive multi-
viewpoint systems using a stereo camera and autostereoscopic display, as shown in Figure
1.11 in the introduction of this thesis. The target application for the system is 3-D
videoconferencing, with scenes consisting of a single human being of whom only the head
and shoulders are visible in front of a uniform (textureless) background.

The PANORAMA system was the first real-time multi-viewpoint communication system
ever built. To realize this, several partners from universities and companies throughout
Europe collaborated for three years: from September 1995 to October 1998. The
universities are from Delft (Netherlands), Hannover (Germany), Milan (Italy), Patras and
Thessaloniki (Greece). The companies are Atomic Energy Association (AEA) (United
Kingdom), CCETT (France), Deutsche Telecom (Germany), Heinrich Hertz Institute (HHI)
(Germany), Intracom (Greece), Siemens (Germany) and Thomson (France). Further the
international medical consortium OP2000 [Jong99] participated by providing field trials in
the medical area.

Figure 6.1 shows one channel of the system, which also incorporates stereo audio,
audio/video encoding/decoding with commercial MPEG-2 codecs, disparity coding with
new special hardware, multiplexing, ATM transmission and subsequent demultiplexing. The
system further included two devices to ensure synchronization of e.g. left/right video
streams and correspondence field data. For more information about all these additional
features we refer to [Ohm98, Pano98a, Pano98b].

In this chapter, we will examine the system parts as indicated by Figure 6.1 and their
integration into a 3-D videoconferencing system. The parts treated are the cameras, the
correspondence estimator, the specific choice of scene model, the multi-viewpoint image
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generator on the basis of interpolation, the autostereoscopic display and the eye tracker. In
the treatment, we will make use as much as possible of the theoretical framework of the
previous chapters. It must be kept in mind though that not all of the results and algorithms
could be included in the PANORAMA system. This is due to implementation feasibility
reasons and the fact that the system was designed in 1995 for project continuity reasons.

Synchro
niser
DUT

Stereo camera, TH

Autostereoscopic
display, HHI

Head tracker, com

Disparity
estimator

HHI
INT

Disparity
encoder UP

MPEG-2
encoder com

MPEG-2
encoder com

Multi
plexer
INT

ATM network
INT

Synchro
niser
DUT

Interpolator
DUT

Disparity
decoder UP

MPEG-2
decoder com

MPEG-2
decoder com

Demulti
plexer
INT

This chapter

Figure 6.1 The PANORAMA adaptive multi-viewpoint system, build by the partners shown
(com = commercial product, DUT = Delft University of Technology, HHI = Heinrich Hertz Institute,
INT = Intracom, TH = Thomson, UP = University of Patras). The videoconferencing application uses
two such systems, including an audio channel. This chapter treats the parts in the dotted area and their
integration into a system.

The chapter is organized as follows. In sections 6.2 to 6.5 we will first describe a
framework for a two-way multi-viewpoint system with an image-based scene model. In
section 6.2 we review several scene models and define a specific image-based scene model
that allows for feasible system implementations. In section 6.3 we show that the model can
be acquired efficiently with a stereo camera using the results from chapters 2, 3 and 4. In
section 6.4 we rewrite the visualization algorithm from Chapter 5 for the new scene model
and derive several lower complexity algorithms. One of those consists of disparity
compensated image interpolation such as employed by the PANORAMA system. It will be
shown that under certain conditions geometrically correct scene visualization is possible
with image interpolation. In section 6.5 we examine the specific constraints in a multi-
viewpoint system due to our two-way videoconferencing application. Then, in section 6.6
we describe the specific details of the  PANORAMA system, making full use of all previous
results. In section 6.7 we report on the extensive subjective tests with the PANORAMA
system, performed at Heinrich Hertz Institute by a professional marketing company. Finally,
section 6.8 concludes the chapter.
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6.2 Scene model for real-time systems
The scene model contains the photometric and geometric properties of the acquired scene.
The choice of model influences both the analysis and synthesis parts of the system and thus
the overall system complexity. In section 6.2.1 we will discuss several models and decide
that image-based scene models are the most promising for a real-time system
implementation. Then we discuss a specific image-based scene model in section 6.2.2 that is
closely related to the PANORAMA scene model.

6.2.1 Different types of scene models
Many different kinds of models are available at the moment, such as wire frames, light
fields, voxel maps, holograms and image based models. Wire frames are easily generated
for synthetic scenes. However, the acquisition of real scenes into a wire frame is still an
extremely demanding task that is not likely to be real-time feasible soon [Pano98a]. Light
fields [Levo96] or ray spaces [Fuji96] describe all light rays that pass a certain surface that
completely contains the scene. For each point on this surface (which has two positional
coordinates), the intensity and color of a light ray in each direction (which has two
directional coordinates) is described. Thus, a dense 4-D array is used, that contains an
enormous amount of data. With only two cameras available, most of this space would
remain undefined or contain redundant data. The same argument holds for holograms and
voxel maps. Although the fringe patterns in a hologram are defined on a 2-D array, the
resolution needed is extremely high. Voxel maps describe scenes very explicitly by dense
3-D arrays. Each entry either is empty, or contains some object point (or cube) with some
emittance or reflectance properties. For medical applications with CT, PET and MRI
scanners, this scene model is very natural. For scenes with opaque objects, normal cameras
only record the surface of objects, and most of the voxel scene model would remain empty
or undefined. Whenever computing power becomes available to allow for scene acquisition
with more than two cameras, the camera-independent scene models such as wire frames, ray
spaces, voxel maps and holograms may gain in attractivity.

In image-based scene models [Kang99], the photometry of the scene is stored in a normal
camera image. Geometric information is stored in special types of images, such as depth
maps [Tzov96], and correspondence fields that describe pixel correspondences in image
pairs, see Chapter 4. The use of images as 3-D scene model is highly attractive from a
complexity point of view, since the analysis and synthesis parts of the multi-viewpoint
system then have images at both their inputs and outputs. At the same time, image based
models are pixel-dense, that is, they contain a number of scene points in the order of 106,
and thus they allow for high quality scene modeling.

6.2.2 Image-based scene model
In this section we will discuss an image-based scene model that we introduced in [Rede97b]
and further investigated in [Rede00]. It is closely related to, but not exactly the same as the
scene model used in the PANORAMA system, which we introduced and examined in
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[Rede97a, Rede97c, Rede97d]. The model discussed here is more appropriate to describe
the overall system mathematically. The PANORAMA scene model is functionally the same,
but incorporates slight differences to enable efficiency both in terms of coding and hardware
implementation. This will be dealt with in section 6.6.1.

The image-based scene model consists of two images IM(xM,yM), DM (xM,yM) and three
scaling constants, Kx, Ky and Kz. Figure 6.2 shows an example of IM and DM. In this chapter,
we will use the xM and yM coordinates centered in the images and pointing in the illustrated
directions. The xM, yM run from – ½ Nx to ½ Nx and from – ½ Ny to ½ Ny respectively. This
differs from the way images are normally indexed, but for clarity and simplicity in the
equations we excluded this trivial transformation in this chapter.

normal yM

normal 

this
chapter xM

yM

xM

Figure 6.2 Luminance IM, depth DM and the image coordinates used in this chapter. The brightness in
DM is inversely proportional to depth.

For each xM, yM the model defines a scene point P with luminance IM(xM,yM) and 3-D
position given by xM, yM, DM (xM,yM) and the three scaling constants according to:
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The choice of (6.1) is guided by its compliance with the triangulation procedure for the DM

disparity field in (4.10), given that we use image coordinates as indicated by Figure 6.2. As
can be seen, the z coordinate of P is inversely proportional to the ‘depth’ map DM. Since
luminance IM is single-valued for each scene point, only Lambertian (diffuse emitting or
reflecting) scenes can be modeled. Figure 6.3 shows the 3-D model that is represented by
(6.1) and the {IM, DM} pair of Figure 6.2.

This scene model has several advantages:

 • For scene luminance, only a single image IM is used which on its own provides
compatibility with normal monoscopic video systems.

 • For scene geometry, the depth map DM can be converted in a simple way to 3-D
coordinates via (6.1).

 • The model contains only three additional parameters Kx , Ky and Kz, used for scaling.
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Figure 6.3 The 3-D model represented by {IM, DM} of Figure 6.2.

In the next sections 6.3 and 6.4 we will see that this scene model can be acquired by a stereo
camera using the techniques from chapters 2, 3 and 4, and that it integrates easily with the
visualization algorithm from Chapter 5.

6.3 Acquisition with a stereo camera
Recently, hybrid cameras have become commercially available that can acquire an image
and a depth map similar to DM directly [Zcam]. At this moment, however, these cameras are
still extremely expensive. Further, they employ active scene scanning, which puts limits on
the scene dimensions.

The image-based scene model in Figure 6.2 can be obtained in a practical way by recording
two images IL, IR with a stereo camera, after which the IM and DM images are constructed by
image processing. We will discuss the stereo camera setup and calibration in section 6.3.1.
In sections 6.3.2 and 6.3.3 the generation of the depth map DM and the image IM are treated.
We will call IM the center image since it is constructed by disparity compensated
interpolation at center position.

The previously mentioned sections assume that scene points are visible in both the left and
right images. In section 6.3.4 we will evaluate the effects of occlusions, that is, parts of the
scene visible in only one image of the stereo pair.

6.3.1 Stereo camera setup and calibration
For the stereo camera we use the parallel setup, as outlined in section 2.4.9. We assume that
camera calibration has been performed, see Chapters 2 and 3. Camera setups other than the
parallel setup are evenly well possible, provided that the images from these cameras are
rectified after calibration (section 2.4.9). Effectively this results in images from calibrated
parallel cameras with parameters baseline b, focal length f and pixel size scx, scy. We use the
additional c as subscript compared to the notation in section 2.4.9 since we will introduce a
different pixel size for the display in section 6.4. The size of the images (camera CCDs) in
pixels is Ncx, Ncy, assumed to be equal to the Nx and Ny of the scene model. Figure 6.4 shows
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an image pair IL, IR obtained with a stereo camera in parallel setup. This image pair was
used to construct the IM, DM pair in Figure 6.2.

Figure 6.4 Original camera images IL and IR from a stereo camera in parallel setup.

6.3.2 Generation of depth map DM and scaling constants
By disparity estimation, extensively discussed in Chapter 4, we construct the disparity field
DM, that is designed especially for the parallel camera setup. If we take the triangulation
procedure (4.10) for this disparity field, use the image coordinates as in (6.1) and Figure
6.2, and use B = ½ b, we find:
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This defines the three scaling constants in (6.1). Obviously, the four parameters B (half the
baseline),  f (focal length) and scx, scy (pixel size) contain one redundant parameter, as there
are only three scaling constants in (6.1). This is conform to the horizontal pixel size
reduction discussed in section 2.4.1. We will not use this reduction here for simplicity
reasons. Later we will relate the three parameters to other parameters, and then all of them
share the same unit of meters (opposed to the hpu unit that has to be used otherwise).

6.3.3 Generation of center image IM

Each xM, yM is related to a scene point for which we find the 3-D position by (6.2). Now we
must determine what is the luminance of this point. Via (4.7)-(4.9) we find:
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We now have the coordinates of the scene point projections in the left and right images, IL

and IR. We perform a weighted average of the luminances of the left and right image:
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Geometrically, this construction equals averaging the luminance of the left and right images
via the correspondence vector as illustrated in Figure 4.21. The IM image lies centered in the
IL and IR images, as indicated mathematically by (4.7). The resultant IM is the image as it
would be obtained by a real camera positioned exactly in the center of the left and right
cameras, hence the name center image.

Photometrically, we used the weight ∆, which we set to:
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The ∆ equals the derivative of the depth map DM with respect to xM, averaged over a
horizontal path with length h. It is directly related to the orientation of objects in front of the
stereo camera. Slanted objects appear with different sizes in the left and right images, see
Figure 6.5.
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Figure 6.5 A slanted object appears with different sizes in the original left and right image. The object
is best rendered in the center image using that original image that contains the object in highest detail.

For ∆ = 1, the apparent size of the object is zero in the right image. This particular object
will be constructed in the center image solely with data from the left image. In the situation
∆ = -1 the role of left and right images are reversed. For planar objects, the apparent sizes
are equal, which corresponds to ∆ = 0. Then the original left/right image data are averaged.
This scheme ensures that each object in the scene will be rendered in the center image on
the basis of the original image that contains the object with the highest resolution.

The h parameter governs the trade-off between adaptability to detail and sensitivity to noise
in the estimated DM. We found that the algorithm is quite insensitive to h, and that good
results are found for 4 ≤ h ≤ 16. Figure 6.2 shows the IM image obtained with h = 8.

The weighting algorithm works only well when |∆| ≤ 1, which can be ensured by the
ordering constraint (4.11).

6.3.4 Occlusion effects
The scheme in sections 6.3.1 to 6.3.3 to acquire the IM and DM images on the basis of stereo
imagery is defined for corresponding points in the left and right images. Whenever a part of
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the scene is visible in one image but occluded in the other image by some other part of the
scene, no correspondence can be established. However, the acquisition scheme can still be
used as follows.

The images in Figure 6.4 show a person of whom each ear is visible in only one image and
occluded in the other. If the disparity estimator detects these objects as being maximally
slanted (|∆| = 1) rather than occluded (Figure 6.6 shows an exaggerated example), then the
objects will be represented in IM and DM as illustrated in Figure 6.2. Both ears are visible in
the center image, where their horizontal size is compressed by a factor of two. Their
geometry is represented by a continuous surface from the background to the foreground.

Left
camera

Right
camera

Virtual
center
camera

Background

Foreground

Stereo visible

Occluded

Not visible

Max. slanted object

Figure 6.6 Occluded areas represented by maximally slanted objects. Depth cannot be measured for
any area visible by only the left or right camera. It is interpolated between background and foreground
parts that are stereo visible. The resultant virtual objects are maximally slanted objects. The virtual
center camera sees all objects, with correct geometry at stereo visible areas and interpolated geometry
otherwise. The arrows show the depth errors due to the interpolation (extreme example).

Of course, the depth assigned to the occluded areas is not correct. The arrows in Figure 6.6
indicate the errors made. Better depth measurements can be obtained if we use more
complex estimation schemes, which e.g. extrapolate surface orientation around the
occlusion, or use additional information from monoscopic features such as shape from
shading, or use more cameras to acquire the occluded points in stereo with another camera.

Subjectively, our scheme provides a quite convincing center image (see Figure 6.2),
including all occluded areas in both the left and the right image.

6.4 Scene visualization
In this section we will concentrate on the implementation of the generic algorithm for
rendering multi-viewpoint images as discussed in Chapter 5, on the basis of the image-based
scene model IM, DM. Head tracking and displays are commercially available, e.g. [Hein,
Orig, Phil], and are not considered here.



Section 6.4  Scene visualization 169

In section 6.4.1 we will outline the generic algorithm. From that we will derive specific
algorithms with significantly lower complexity in section 6.4.2. One of these algorithms is
equivalent to the image interpolation which the PANORAMA system uses.

6.4.1 Generic visualization algorithm
According to section 5.2.2, we first have to define the translation, rotation and scale
between the display and the scene model. Since our image-based scene model {IM,DM} does
not contain the rear side of the scene, rotating the scene manually for the ‘walk around’
possibility does not make much sense. We translate the scene by an amount Tz in the zD

direction towards the viewer, and then scale it by a factor S. As discussed in section 5.2.2,
this provides a scene overview possibility and some means to minimize the accommodation-
convergence conflict (see Figures 1.6 and 5.2). In combination with (6.2) we have:
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Before we use this scene model in the generic visualization formulas (5.1) and (5.2) from
Chapter 5, we will make some assumptions and introduce some variables.

We assume that the number of pixels is Nx, Ny for both the cameras and the display, and that
their pixel aspect ratios are both equal to R:
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The sdx and sdy are the display pixel size. Further, we introduce G, the scale difference
between the camera and display pixels, and a system constant Zsys:
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The f is the focal length (in meters) of the cameras. When we apply (6.6), (6.7) and (6.8) to
the generic visualization formulas (5.1) and (5.2) we obtain (leaving out the transformation
for the origin of the pixel coordinates):
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Here, E is the eye location with its coordinates in the display reference frame as defined in
Chapter 5, and Q is the projection on the multi-viewpoint image of a point P from the scene
model {IM,DM}. With (6.9), we have the pixel coordinates xI, yI of Q, while the point P is
given by xM, yM and dM = DM (xM,yM). For the rendering process we refer to section 5.2.1.

Although (6.9) appears a bit complex, it describes everything that needs to be done for the
synthesis of multi-viewpoint images in a fully viewpoint-adaptive system. As (6.9) only
contains simple operations (additions, subtractions, multiplications and divisions) it seems
possible to implement it in real-time.

The system constant Zsys is related to the viewing angles of the cameras [Ωcx, Ωcy] and the
viewing angle of the viewer with respect to the display [Ωdx, Ωdy], see Figure 6.7.

Optical centerCCD

Cameras

Ωcx

f

Wcx

Scene
ΩdxWdx

Display

Zsys

Ωcx

Figure 6.7 When the viewer is located at depth Zsys in front of the display, his viewing angle to the
display equals the viewing angle of the cameras. This figure is a top view showing only the Ωx angles.

We find:
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The Ws are the sizes of the display and CCD chip in meters:
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Whenever the viewer is located a distance Zsys in front of the display ( DzE = Zsys), the
camera and display angles are the same.

6.4.2 Specific algorithms with complexity reduction
We will discuss five different algorithms based on (6.9) that may serve for real-time
implementations with reduced complexity. The price to pay is a reduction in adaptivity to
viewer motion (via E), and less freedom in the positioning and scaling of the scene (via Tz

and S, respectively). One algorithm results in image-interpolation as used by the
PANORAMA system.

Adaptivity in all directions, but restricted scene position and scale
The largest reduction of (6.14) is accomplished by discarding the disparity dependent
division in the numerator. This can be done by setting STz = DzE , which results in:
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This means that the scene position and scale are coupled, and adapt with the viewers depth
position. Since only the product of the two parameters is fixed, we can still set either Tz or S
at will, e.g. set Tz to minimize the accommodation-convergence conflict or set S = 1 for
correct scale. In the first case, the scale of the scene is coupled with the viewer’s movements
in the depth direction. In the second case, the scene makes ‘counter’ moves in the depth
direction when the viewer moves. The scene geometry remains correct, but effectively the
algorithm does not provide motion parallax in the depth direction.

Although a major complexity reduction is achieved, these effects are very unnatural making
the reduction not appealing on its own.

Only adaptivity in horizontal and vertical directions
The ‘counter’ moves of the scene caused by (6.12) can be circumvented by setting STz = Zsys

and requiring DzE = Zsys. The STz = Zsys restriction stops the counter moves, since no
coupling is present anymore with the viewer’s position. By DzE = Zsys, the adaptivity to
viewer movement in the depth direction is lost and any movement results in geometric
distortion of the scene. As shown in Chapter 5, these distortions can be neglected for
reasonable deviations of DzE from the prescribed position. As shown in section 6.4.2, the
viewing angles of the cameras and the viewer with respect to the display become equal.

Both restrictions together ensure STz = DzE as used by (6.12). This results in:
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with

dx
offset s

B
D = (6.14)

In stereo systems, correct scene visualization can be obtained for a single fixed viewpoint
(see Figure 1.5 in Chapter 1), provided that the left and right images are slightly shifted in
the horizontal direction with respect to each other [Grin94, Konr99, Kutk94]. The offset
(6.14) is equivalent to the shift when generalized to multi-viewpoint systems.

Figure 6.8 shows several images generated with (6.13) and DxE ∈ {-B, 0, B},
DyE ∈ {-½B, 0, ½B} and S = 1. Subjectively, all generated images look very natural. Even

though the original images were recorded by a horizontally displaced camera, the generation
of vertically displaced viewpoints is easy and successful. The image in the center is IM, and
all the eight other images are extrapolated from IM via (6.13). The images left and right next
to IM are reconstructions of the original left and right image (apart from the shift Doffset). The
PSNR resemblance with the original images IL and IR is 43 dB.  Clearly, as a side effect, the
image-based model {IM,DM} can encode the original stereo image pair very effectively.

Figure 6.8  Synthesized images for several viewpoints.

Only adaptivity in horizontal direction
In Chapter 5 we saw that horizontal adaptivity is the most important factor for the
introduction of motion parallax. If we discard adaptivity to vertical viewer movements by

DyE = 0, and additionally set the scale constant S = 1, (6.13) becomes:
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Due to fixing the scale to the correct S = 1, it automatically follows that Tz = Zsys. We thus
have no freedom anymore in setting the depth of the scene. Only scenes that are located at a
distance Zsys from the cameras that capture it, are visualized exactly centered in the display
to minimize the accommodation-convergence conflict.

In terms of complexity, this restriction may be useful, since images are normally transmitted
by line-wise scanning. Using (6.13), a full image needs to be stored by the algorithm, while
(6.15) operates at a line-by-line basis.

An additional advantage of (6.15) is that it is valid without modification for image
coordinates starting in the upper left corner as shown in Figure 6.2. Thus, the coordinate
transformation need not be implemented at all. For (6.13) the same holds, apart from a sign
change of R (it should be preceded by a minus sign to account for the yI axis pointing
downwards).

Restricted adaptivity in horizontal direction; image interpolation
For restricted viewpoints within DxE ∈ [-B, B], the images returned by (6.15) are equal to
horizontally shifted, disparity-compensated interpolations of the original left and right
image (although generated here by extrapolation of IM). The restricted viewing range
corresponds exactly to the camera baseline b = 2B. In many algorithms for multi-viewpoint
image interpolation, the shift Doffset needed for correct scene geometry visualization is not
incorporated in (6.15) [Chup94, Liu95, Ohm97, Veig96]. The shift is incorporated in the
PANORAMA system [Ohm98, Rede97f].

No adaptivity
The last reduction in complexity is achieved by discarding all adaptivity. Then, the images
shown are always IM for both eyes, resulting in a conventional, non-adaptive monoscopic
system. In this case no processing is needed and also the DM image need not be transmitted.
Although it might seem easier to just record the IM image by a camera, it is still worth the
effort of performing the stereo acquisition to generate the IM image.

In this way, a monoscopic videoconferencing application can be built in which direct eye
contact is possible. A normal camera is always positioned on top of or next to the display,
which inhibits direct eye contact. The two cameras of a stereo pair can be mounted left and
right of the display, resulting in a virtual center camera mounted exactly in the display. A
person can then be recorded straight in the face, while observing someone else on the
display. A similar approach with a trinocular camera setup was adopted in [Liu95].

6.5 A two-way videoconferencing application
In this section we will discuss a symmetrical two-way multi-viewpoint videoconferencing
system on the basis of image interpolation via (6.15) with DxE ∈ [-B, B]. Figure 6.9 shows
one of the conferencing sites, where Alice communicates with (virtual) Bob. Here Alice is
the viewer and Bob is the scene to be visualized. Bob’s site is equal to that of Alice’s (with
the names exchanged).
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Figure 6.9 One site of a symmetric two-way videoconferencing application. For geometrically correct
scene visualization, many constraints arise (parallel camera setup for acquisition algorithm, cameras
and display at same depth for visualization algorithm, cameras left and right of the display for eye
contact, image interpolation at the visualization side). If no special care is taken, the net result is that
the viewing angles of Alice’s cameras do not overlap at her.

In section 6.5.1 we will deal with restrictions that are specific for this application. These are
due to the acquisition and visualization algorithms, the minimization of the accommodation-
convergence conflict and the requirement of eye contact between Alice and Bob. In section
6.5.2 we will derive the net result, shown in Figure 6.9, that Alice’s cameras cannot record
her. Finally in section 6.5.3 several system solutions are proposed that solve this issue. At
the same time, we explain how current interpolation algorithms may still produce correct
scene visualization although the necessary shift Doffset is absent.

6.5.1 Restrictions due to system parts and the application
The requirements for the two-way videoconferencing application are described next. They
are due to the acquisition algorithm, the visualization algorithm, the minimization of the
accommodation-convergence conflict and the necessity of eye contact.

Acquisition algorithm
The acquisition scheme from section 6.3 requires a parallel camera setup.

Visualization algorithm
For correct scene visualization with image interpolation, the distance between a viewer and
the display must be equal to Zsys discussed in section 6.4.1. The algorithm (6.15) requires
that the viewing angles of Bob’s cameras and Alice’s eyes to her display are the same Ω as
discussed in sections 6.4.1 and 6.4.2. In a symmetrical system, the two one-way systems
have the same Zsys and Ω. Thus also Alice’s cameras have viewing angle Ω, see Figure 6.9.

Minimization of accommodation-convergence conflict
To minimize the accommodation-convergence conflict, virtual Bob must be located in the
center of Alice’s display. For this, we found in section 6.4.2 that the real Bob must be
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located at a distance Zsys behind his cameras. This is due to the fixed depth shift Tz = Zsys

when using (6.15).  Due to the two-way symmetry, this holds also for Alice. Since she is
located at a distance Zsys from her display, her cameras must be located at the same depth as
her display, see Figure 6.9.

Eye contact
In videoconferencing, a vital feature is that the communicating persons have direct eye
contact [Liu95]. Therefore, the heads of Alice and virtual Bob must be at the same height. If
image generation is performed on the basis of interpolation, the left and right cameras
recording Alice’s head must be at the same height as the center of the display showing
Bob’s head.

6.5.2 Net effect of all restrictions
The restrictions due to minimizing the accommodation-convergence conflict and the
necessity of the eye-contact require that the cameras are mounted left and right of the
display. Then, the camera baseline b equals the display width Wdx plus some extra ∆W to
account for the camera and display housing:

WWBb dx ∆+== 2 (6.16)

Due to the restrictions from the acquisition and the visualization algorithm, the camera
images do not overlap at the position of the Alice, see Figure 6.9. Subsequently, Alice
cannot be captured in stereo and the system is useless.

6.5.3 Solutions for geometrically correct scene visualization
Several solutions are available to solve the issue of camera overlap found in section 6.5.2.
We could relax the constraint that the Ωs be the same, but then we must accept that the
system no longer provides geometrically correct scene visualizations. Further, we could
place the cameras somewhere else, avoid the baseline constraint (6.16) and then project the
cameras inside the display by means of a half-mirror, see Figure 6.10. This leads to large
and cumbersome mechanical devices, however.

A solution that combines simplicity with correct scene geometry is to use cameras with
shifted CCDs, as shown in Figure 6.11a. The shifts can be realized by physically
repositioning of the CCDs, or by selecting a small portion of a larger CCD at the cost of
resolution. The shifts can also be approximated by a camera setup that slightly converges,
see Figure 6.11b. This is at the cost of some vertical disparity, in contrast with the real
parallel camera setup that produces pure horizontal disparity. We can accounted for this by
image rectification (see section 2.4.9), but for small convergence angles, the vertical
disparity can be neglected [Rede97f].
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Figure 6.10 Avoiding the baseline constraint by the aid of a half-mirror.

Optical center

CCD
(a) (b)

Figure 6.11 Creating overlap by a) shifted CCDs or b) a converging stereo setup.

Shifting the left and right camera CCDs Nshift pixels to the right and to the left respectively
(actually or effectively), lowers the xL coordinate and rises the xR coordinate of a
corresponding pixel pair by Nshift. According to (6.6), this is equivalent with lowering DM by
Nshift, while xM remains the same. Thus, in addition to increasing the camera overlap, we
have implemented part of the shift (6.14). For correct scene visualization we must have:

dx
shiftoffset s

B
ND =+ (6.17)

This offers a degree of freedom in the design of the system. However, the more the shift is
assigned to the visualization side by Doffset, the less the camera images will overlap (the
bundles in Figure 6.11 will overlap less). Moreover, if the converging setup of Figure 6.11b
is used, the more the shift is assigned to the acquisition side by Nshift, the more vertical
disparity will arise in the images, resulting in image distortion and small errors in the scene
geometry. In such cases, a trade-off must be made between camera overlap and vertical
disparity. A theoretical treatment of the trade-off can be found in [Rede97f].
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Since

dxxdx sNW = (6.18)

we find with (6.16):

dx
xshiftoffset s

W
NND

22

1 ∆+=+ (6.19)

Figure 6.11 (both a and b) shows the ideal situation, where the shift is fully implemented at
the acquisition side, with Nshift = ½ Nx and ∆W = 0. This setup has at least two advantages.
First, it enables multi-viewpoint interpolation algorithms with zero Doffset [Chup94, Liu95,
Ohm97, Veig96] to provide correct scene visualizations. Secondly, it is easy to determine
the scene dimensions. The width and height of the captured scene are exactly equal to the
dimensions of the display, at a distance Zsys from the cameras (see Figure 6.9). In front of
the display, the scene has the shape of a screwdriver tip that ends at ½Zsys. Behind the
display, the scene continues infinitely.

Since the scene (a human head) is centered in the display as in Figure 6.9, it is clear that the
display must at least have the size of a human head. In addition, if the person in the
visualized scene moves his head, the display must be large enough to cover also this range
of movement. For the person in the role of the viewer, the movement range is equal to the
camera baseline as discussed in section 6.4.2. The movement ranges for a person in two-
way communication, who is both viewer and scene, is equal to the camera baseline, since
the display size and baseline are more or less the same via (6.16).

6.6 PANORAMA system
In this section we will discuss the details of the PANORAMA two-way multi-viewpoint
videoconferencing system on the basis of image interpolation. In section 6.6.1 we deal with
the PANORAMA scene model. This is effectively equal to the scene model introduced
earlier in this chapter besides some implementational advantages. Then, we will deal with
the acquisition  and visualization algorithms in sections 6.6.2 and 6.6.3 respectively.

6.6.1 Image-based scene model
The {IM,DM} introduced in section 6.2 allowed for a clear mathematical description in
sections 6.3 to 6.5 for the system framework. The PANORAMA scene model consists of
{IL,IR,SM}, see Figure 6.12. Functionally, it is the same model, with some implementational
advantages, and a slight image quality improvement capability. Photometric scene
information is contained in IL, IR, the original left and right image. The scene geometry is
contained in a special image, SM, called the chain map, which is effectively equal to DM

[Rede97a, Rede97c, Rede97d].
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IM DM IL SM IR

Figure 6.12 The {IM,DM} scene model versus the PANORAMA scene model {IL,IR,SM}.

We will now discuss the PANORAMA scene model images SM, IL, IR, their relation with the
{IM,DM} scene model, and their format (resolution, color, etc).

Chain map image SM

The disparity or depth map DM is directly related to the chain map SM by:
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The DM is the integral of SM, and SM is related to the derivative of DM:
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The SM is defined as a binary valued function on an extended domain, that is, the integers
together with the integers plus one half:
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Figure 6.13 shows an example of DM and SM.

DM SM

xMxM0 1 2 3 4 ….

Figure 6.13 The depth map DM versus the PANORAMA chain map SM.

If we compare (6.21) and (6.22) with the ordering constraint (4.11), we see that the chain
map inherently incorporates it. In [Rede97a, Rede97c, Rede97d] the chain map was
introduced in a more complex form to model also occlusion areas explicitly, instead of via
maximally slanted objects as in Figure 6.6. In those treatments, the chain map was
subsequently reduced to the SM discussed here. The use of SM has several implementational
advantages over DM:
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• There is no inherent upper or lower limit to disparity, opposed to e.g. an 8-bit DM

image.

 • SM is coding efficient, since it only requires 2Nx x Ny x 1 bit per image, which is
2 bit/pixel or equivalently 2 bit/scene point.

 • SM allows for efficient hardware implementations of the acquisition and visualization
algorithms [Rede97d].

Luminance images IL and IR

The use of both left and right images in the PANORAMA scene model allows for the
modeling of non-Lambertian reflecting surfaces (a scene point may have different
luminance in the left and the right viewing direction). Also, the occlusion areas are
represented with normal resolution, opposed to half resolution in the center image IM.
Finally, the system may render images at the most left and most right viewpoints with higher
quality since these viewpoints correspond to the original images. These advantages are at
the cost of more transmission bandwidth.

The three images IL, IR and SM all have different horizontal coordinate axes. However, for
each scene point indexed by xM, yM, the chain map SM provides DM given by (6.20). Then
via (6.3) we can directly obtain the xL and xR coordinates and use the original images to
obtain the scene point luminance.

Image format
The image format in the PANORAMA system is CCIR601, that is 720x576 pixels, 25
frames per second, interlaced, YUV color in 4:2:2 format. The chain map was vertically
subsampled by a factor of four, yielding a vertical resolution of 144 lines per frame or 72
lines per field. This was due to the disparity estimator, which inherently provides this
resolution. The chain map was linearly interpolated to full vertical resolution at the receiver
side [Ohm98, Pano98a, Pano98b].

6.6.2 Scene acquisition
The scene acquisition process encompasses the definition of the position and size of the
scene, the stereo camera and its setup, and finally correspondence estimation. We will
elaborate on these topics next.

Scene position and size
For our application of videoconferencing, the scene consists of a human head and shoulders.
This yields a scene with size of (about) 20x30x20 cm. For the position (see Figure 6.9) we
select Zsys = 1 m, which reflects a normal distance for both conversation and viewing a
display.

Stereo camera and setup
We used a stereo camera in parallel setup. The cameras were mechanically very robust and
precise, and contained high quality lenses. Therefore, the parallel setup could in principle be
achieved without calibration or rectification. A large baseline of about 30 cm was used:
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b = 30 cm  B = 15 cm (6.23)

This is the minimum baseline (6.16) due to the width of the display plus the housings of
camera and display (see next section). The CCD chips in the cameras had size 1 cm by
0.75 cm. The number of pixels on the chip was 720x576. This yields the camera pixel size:

scx = 1.39x10-5 m scy = 1.30x10-5 m (6.24)

The camera pixels have an aspect ratio R equal to 1.07. Substituting the display pixel size
(6.29) discussed in the next section and (6.24) into (6.8), we find:

G ≈ 32.00 (6.25)

and then with Zsys = 1 m we find via (6.8) we find the focal length f of the cameras:

f ≈ 31.3 mm (6.26)

The overlap in the camera was implemented by a slightly converging camera setup as
discussed in section 6.5.6. For the trade-off (6.19) of the shift at acquisition and
visualization side, we derived theoretical solutions in [Rede97f]. However, especially in
head-shoulder scenes with uniform background, the small scene geometry errors due to
vertical disparity are hardly noticeable. Therefore we chose to maximize camera overlap as
in Figure 6.11b. The shift was thus implemented completely at the acquisition side. With
B = 15 cm and Zsys = 1 m, the stereo convergence angle α as defined in section 2.6.1 equals
about 17.3°, which gives negligible vertical disparity for our application [Rede97f].

With the choice of setup as in Figure 6.11b, the scene size is easily determined as discussed
at the end of section 6.5.1. The scene width and height are those of the display, 21x29 cm,
while the scene extends 50 cm out of the display in a triangular shape and infinitely far
behind the display. This size is sufficient for the display of human heads that are slightly
moving.

Correspondence estimation
Due to the (effectively) parallel setup, correspondence estimation is reduced to disparity
estimation. This was performed by a hierarchical block matching algorithm, implemented in
hardware. For each image field of 720x288 pixels the estimator yields a disparity field DM

with resolution 720x72, as discussed in section 6.5.2, which was then transformed into a
chain map SM automatically imposing the ordering constraint. The estimator had a pixel
resolution and a maximum search range of 128 pixels with an adjustable offset. Via (2.65)
we find for the depth accuracy at the scene center:
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With ∆DM = 1 and a human head as scene we find that about 100 depth levels are needed,
which is within the capability of the estimator. Details of the algorithm and its
implementation can be found in [Ohm98].

6.6.3 Scene visualization
At the visualization side, we implemented a multi-viewpoint image interpolation algorithm
in hardware, on the basis of (6.15) with | DxE | ≤ B. The image shift (6.14) was almost
completely implemented at the acquisition side, thus Doffset ≈ 0 (zero, apart from slight
manual adjustment to improve the subjective scene quality).

Since both the original left and right image are in the scene model, the luminance
interpolation (6.4)-(6.5) was performed at the visualization side. The weighting
incorporated an extra feature to enable exact reproduction of the original left and right
image at the outer viewpoints | DxE | = B. The requirement for the weighting algorithm that
the ordering constraint is fulfilled was automatically ensured by the chain map. The
subsampled chain map from the acquisition stage was interpolated to full resolution at the
visualization side. The chain map allows for efficient hardware implementations of (6.4),
(6.5) and (6.15). For details of these algorithms and their hardware implementation we refer
to [Rede97d].

A prototype autostereoscopic display was used with a viewpoint adaptive lenticular screen
[Hein]. It was based on a 90° rotated VGA LCD. Its physical size was [Rede97f]:

Wdx = 21.3 cm Wdy = 28.4 cm (6.28)

The number of pixels on the display was 480x640. This yields the display pixel size:

sdx = sdy = 4.44x10-4 m (6.29)

The display pixels are square and their aspect ratio R is 1. This yields a 7% difference
between the aspect ratios of camera and display pixels, opposed to (6.7), which requires
equal aspect ratios for correct scene visualization. This small difference was neglected.

The effective display resolution is 240x640, since the lenticular autostereoscopic display
technique makes it necessary to multiplex the stereo image spatially over the screen. The
generated multi-viewpoint images had CCIR601 format Nx = 720, Ny = 576 pixels, and thus
were cropped horizontally (120 pixels at each side), extended vertically (32 black pixels at
top and bottom) and subsampled horizontally by a factor two.

Due to the subsampled horizontal resolution, the horizontal size of the pixels is actually
twice as large as in (6.29). Also for the pixel aspect ratio we find actually R = 2. However,
since the resolution of both the display and the images is divided by two, the net effect is
only slight blurring of the visualized scene, and  (6.29) may still be used as effective pixel
size for the determination of system constants as G, f and Zsys.
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Similarly, the number of pixels on the display differs substantially from that on the camera
CCD chips, opposed to (6.7). This can be neglected, since the actual display is equivalent
with a display with 720x576 pixels, part of which is covered due to the image cropping. As
a positive side effect, this allows the cameras to be placed closer to each other than would
have been possible with an actual 720x576 display. This is similar to the situation in Figure
6.10, where the display shown  is the virtual 720x576 display, the dotted cameras are our
actual cameras and our real display is located in between the cameras (not shown in the
figure). This was however not done in the PANORAMA system, since it would also lead to
a reduced horizontal movement freedom for the viewer.

A commercially available head tracker was used [Orig]. It measured the head position H as
shown in Figure 5.5 (Chapter 5). Since (6.15) requires DyE = 0 and DzE = Zsys, we defined
the eye positions as:
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The inter-eye distance deye was set to 6.5 cm.

The tracker yields anistropic errors of 2, 2 and 8 mm in the x, y and z directions,
respectively [Orig]. The resulting σ∆E = 2 mm is just above the observation threshold of
1 mm, found in section 5.3.2 for a videoconferencing application (assuming a viewer-
display distance of 1 m).

The implementation of the visualization algorithm could interpolate 256 different
viewpoints between left and right images. With b equal to 30 cm, the viewpoint ‘density’ is
about 1.2 mm. As discussed at the end of section 5.3.1, this is effectively equal to eye
tracking errors of about 1 mm. As this is just at the observation threshold, the discretization
is well chosen.

6.7 Experiments
The PANORAMA 3-D videoconferencing system was evaluated in a two-stage test by a
professional marketing company, at the location of Heinrich Hertz Institute, Berlin. The
internal PANORAMA document [Pano98c] reports on these and other tests. We will
discuss the excerpt concerning our videoconferencing system.

In the first stage of the test, interviews with experts and a workshop with non-experts were
held. The goal of this stage was to evaluate the main opinion about the idea, the advantages
and the disadvantages of 3-D videoconferencing. The results were used to develop an
optimal test strategy for the second stage. The second stage consisted of a subjective test
with 16 persons, who evaluated the system under laboratory constraints.
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In the sections 6.7.1 to 6.7.3 we will discuss the preceding interviews, the scenario for the
subjective test and its results respectively.

6.7.1 Preceding interviews
Three experts were interviewed during one hour and a workshop with 18 non-experts was
held. The topic was to evaluate the main opinions regarding the following questions:

 • What are the strengths and weaknesses of the existing videoconferencing systems?
 • What is expected of future and 3-D visualization?

It was found that the weaknesses of existing systems were the missing spatial feeling, the
poor resolution, small images and a missing eye contact. However, a videoconferencing
system was very economical (as compared to travelling), useful for exchanging information
fast and directly, useful for intensive discussions between persons and groups, and finally a
promising add-on in video communication.

A future videoconferencing system should be realized in high resolution, with a realistic
view and flowing movement. The user should have the impression that he sits in the same
room as the conference partner, i.e. experience telepresence. The non-experts said a 3-D
feel is very important for an acceptable system. In contrast, the experts did not expect
advantages from 3-D video and did not think that telepresence would play any role.

6.7.2 Scenario for the subjective test
From the first stage, it was clear that high resolution was generally thought to be necessary
for future videoconferencing systems, while on 3-D and telepresence, no unanimous
agreement was reached. The goal of the second stage is to verify these results with the
PANORAMA system.

The subjective test consisted of 16 one-hour tests, with 16 persons using the real-time
videoconferencing system. Figure 6.14 shows the system setup used for the tests. At the
time of the test, a single hardware system was available. Therefore, our two-way system
consisted of one 3-D link, used for the test, and a conventional monoscopic link.

In front of the test person, a conventional camera and a stereoscopic display were set up.
Nearby, the interviewer of the marketing company and the operator were sitting. The second
conferencing person sat behind a panel with a uniform background, with a stereo camera
and a conventional display in front of him. An audio link improved the acoustic conditions,
which lead to a more realistic scenario.

The influence of display quality was tested using two different displays: an autostereoscopic
display with relatively low resolution (discussed in section 6.6.3), and a conventional PC
monitor with high resolution, where stereoscopic images were shown with the test person
wearing shutter glasses. This display is not useful in actual two-way 3-D videoconferencing
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systems; it was only applied to evaluate the high resolution. In our setup with one
conventional link, the second person was not wearing special glasses so the test person
could make unobstructed eye contact.

Stereo display &
monoscopic camera

Control Table

Test
Person

Disparity
Estimator &

Interpolator Rack

Stereo camera &
monoscopic display

Interviewer

Operator

Uniform Background

2nd person

3-D link
Conventional

link

Figure 6.14  The system setup for the subjective test.

The effect of 3-D and telepresence was tested by introducing three system modes:
viewpoint-adaptive monoscopic mode, stereoscopic mode without viewpoint adaptivity and
finally the full mode with viewpoint-adaptive stereoscopic visualization.  Figure 6.15 shows
some typical images generated by the PANORAMA system in the viewpoint-adaptive
mode.

Figure 6.15 Viewpoint-dependent images generated by the real-time PANORAMA 3-D
videoconferencing system.

For the system settings we used the results from section 6.6 as guidelines. The setup of
cameras and display was performed manually until maximum viewing comfort was
established. The deviations from the guidelines led to slightly incorrect geometry of the
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visualized person, but that was not noticed by any person during both the setup and the test
itself (even when camera baselines up to 50 cm were used). The settings used were the same
for all test persons during the entire test.

The two displays in the three modes result in six different situations. All of these were
compared with a reference situation. For this, we used a conventional setup, namely
monoscopic viewing without viewpoint adaptation at the PC monitor. In this situation, the
PANORAMA system still provides direct eye contact as discussed at the end of section
6.4.2.

The following variables were evaluated with 1-2 questions in each test situation: image
quality, spatial feeling, 3-D impression, naturality and eye contact. The test persons were to
judge the visual impression without knowledge of the technical background and the applied
mode. The rating scale was within the range 1 (worst) to 7 (best).

6.7.3 Results
It was found that the naturalness and eye contact was weighted similarly in all test
situations. The ratings for image quality, spatial feeling and 3-D impression are given in
Figure 6.16, Figure 6.17and Figure 6.18.
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Figure 6.16 Subjective rating of image quality. M=monoscopic, S=stereoscopic, V=viewpoint
adaptation, rating from 1 (worst) to 7 (best).
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Figure 6.17 Subjective rating of spatial feeling. M=monoscopic, S=stereoscopic, V=viewpoint
adaptation, rating from 1 (worst) to 7 (best).
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Figure 6.18 Subjective rating of 3-D impression. M=monoscopic, S=stereoscopic, V=viewpoint
adaptation, rating from 1 (worst) to 7 (best).

The figures show that the higher resolution was preferred in all tests. Further, the image
quality was rated best for the stereoscopic and for the viewpoint-adapted situation on each
display. The same results were found for the spatial feeling and the 3-D impression. There
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was no difference between the results of experts and non-experts, regarding the 3-D
impression. Experts were very impressed by the system and they modified their opinion of
its merit.

6.8 Conclusions
In this chapter we described the PANORAMA 3-D visual communication system. It is an
adaptive multi-viewpoint system as introduced in chapter 1, with scene acquisition on the
basis of stereo camera and real-time disparity estimation and scene visualization with an
image interpolation algorithm and an autostereoscopic display. The system has recently
been built in hardware by a cooperation of several partners throughout Europe, including
both universities and companies. It is the first system that actually realizes real-time,
viewpoint-adaptive 3-D visual communication with natural scenes. The target application
was 3-D videoconferencing, where two people communicate via a display and see each
other in 3-D. Our main contributions discussed in the chapter are the introduction of a new
scene model that forms the heart of the PANORAMA system, the acquisition of this model
with a stereo camera, the transcription of the general visualization algorithm of Chapter 5
for this model and the derivation of overall system settings to obtain a correct 3-D
impression.

Our new scene model is image based. It contains one image for scene luminance and one
image for the scene geometry. As shown by the PANORAMA system, this scene model
allows for real-time implementations of scene acquisition and visualization algorithms, and
at the same time yields high-quality scene models (in the order of 106 scene points). The
scene model provides backwards compatibility with conventional monoscopic television
systems, it enables direct eye contact in monoscopic video-conferencing systems, and can
be used to encode a stereoscopic image pair effectively.

We examined the acquisition and visualization algorithms on the basis of the new scene
model. We showed that the scene model can be acquired with a stereo camera in parallel
setup (or any other setup if the images are subsequently rectified), followed by disparity
estimation and disparity-compensated interpolation of the stereo image pair. We combined
the general visualization algorithm of Chapter 5 with the scene model of this chapter.
Effectively, all images generated by this algorithm are extrapolations from the single
luminance image in the scene model.

We derived several lower-complexity algorithms in order to obtain hardware feasibility.
One of these algorithms equals image interpolation with respect to the original stereo image
pair, as used in the PANORAMA system. We showed that geometrically correct scene
visualization is still possible with such an algorithm, and we derived the conditions under
which this is the case. Experiments were performed with typical video conferencing scenes
and offline computer processing. These showed that high-quality, natural-looking images
can be rendered for adaptive multi-viewpoint systems.

For the PANORAMA system, we were able to find settings that enable geometrically
correct 3-D scene visualization. The feasibility of a real-time hardware implementation
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gives many constraints, which were all met. A constraint of more principal nature was
identified for two-way videoconferencing applications: the recording cameras are attached
left and right of a display, and thus the baseline is slightly larger than the display width. We
showed that this poses a challenge, and that its solution is directly related to the conditions
for correct scene visualization with image interpolation algorithms.

We reported on extensive subjective tests that have been conducted with the PANORAMA
system. The main result of these tests is that the feeling of telepresence is greatly enhanced
by the introduction of viewpoint adaptivity. The resulting motion parallax is a promising
feature yielding a positive subjective impression. The system outperforms conventional
monoscopic and stereoscopic systems. Even test persons with low expectations of 3-D
techniques prior to our test changed their opinion in favor of 3-D after their experiences
with the PANORAMA system. We may conclude that in the area of 3-D visual
communication, multi-viewpoint systems are feasible candidates for real-time
implementations.

Several issues are open for future research. For the acquisition part of our system, recently
hybrid cameras have become commercially available [Zcam], which capture the image-
based scene model directly, without processing. This may enhance the quality of the depth
maps and at the same time reduce system complexity. At this moment however, these
cameras are more expensive than the system built in the PANORAMA project. For the
acquisition parts with normal cameras and processing, the more modern Markov Random
Field (MRF) based correspondence estimators may be used, which have pixel resolution
instead of the block resolution in our current approach. In Chapter 4 we showed that the
computational requirements of MRF algorithms are not always exorbitant, which may lead
to feasible real-time implementations. Further, multi-camera systems may be used to capture
scenes with a more complex topology. This will require also more complex scene models,
such as light fields or wire-frame models.

For the future of the visualization part in the system, the subjective performance of 3-D
videoconferencing increases with the resolution of the display. Autostereoscopic displays
must catch up with the resolution of e.g. current PC monitors. Further, the restriction of
intermediate views can be relaxed. We showed that the general algorithm for any viewpoint
has a complexity low enough to be implemented in real time, and leads to very natural
multi-viewpoint images, even when the scene is acquired with only two horizontally
displaced cameras. Further, we derived algorithms and system settings that ensured
geometrically correct scene visualization, but at this moment it is not known to what extend
a viewer actually needs that in a videoconferencing application. If this requirement can be
relaxed, it may lead to more freedom in the camera and display setup. This was actually
used during the tests with the PANORAMA system.



Chapter 7 

Future outlook on 3-D visual
communication systems

7.1 Current status of 3-D systems
In the area of visual communication, much research effort is currently being put in the
enhancement of quality and telepresence (immersiveness) by 3-D visualization. The number
of applications that benefit from such enhanced communication possibilities is obviously
enormous. It enables improved videoconferencing in order to reduce business travelling,
better remote assistance possibilities in the medical and industrial areas,  new options for
entertainment, advertising and educational purposes, and many more.

In the area of 3-D visual communication systems, one of the first systems was the
stereoscopic system. Although the concept was already used in the 19th century for
photography, it has not become used on world-wide scale in visual communication systems
of today. The main reason for this is that the introduction of stereo was always accompanied
by a loss in user-friendliness or in image quality. In cinemas, viewers had to wear special
polarized glasses, while at home in front of the TV glasses were used that were colored red
and green for the left and the right eye, respectively. The colors of the original TV program
were lost, while the new colors caused head aches. The drawbacks of these stereo systems
were caused by two facts. First, there were no so-called autostereoscopic displays available
that worked without eye wear. Secondly, in the home television system the compatibility
issue was of major importance. The TV displays had no polarization capability and were
certainly not autostereoscopic. Further the transmission channels used PAL, NTSC, or other
standards, leading to the principle of red/green color mixing.

In the past decades, major improvements have been made in technology for cameras,
displays, transmission systems and signal processing. The introduction of digital technology
enabled us to incorporate 3-D aspects far more easily than before, offering new options that
sacrifice less image quality or user-friendliness. In recent years, many different systems
have been developed. For example, a high-quality stereoscopic system was developed in the
European research project DISTIMA. It was followed by the European PANORAMA
project, in which a real-time autostereoscopic was built that, for the first time, incorporated
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another 3-D cue called motion-parallax. This cue enables the viewer to change his
viewpoint on the visualized scene, e.g. to ‘look around’ objects. This was at the cost of
providing imagery for a single viewer only. At MIT in the USA, prototype holographic
systems have been built that allow for multiple viewers simultaneously. Holographic
systems also show the 3rd and last visual 3-D cue: the eye lens accommodation cue that
enables the eyes to focus on a particular object of interest. These holographic systems are,
however, in a very premature state, requiring massive parallel computers and synthetic
images, while still offering only very small display sizes.

In this thesis we investigated adaptive multi-viewpoint systems, which formed the basis of
the PANORAMA system. These provide a viewer with stereoscopic images as well as
viewpoint adaptivity (motion-parallax). In Chapter 6, we showed that these systems are the
most promising candidates for real-time implementations at the moment and the near future:
they use conventional cameras, (almost) conventional displays, conventional digital
transmission channels and a substantial amount of state-of-the-art digital signal processing.
At the same time, they enable 3-D scene capturing and visualization in full color and full
resolution.

Subjective test with the PANORAMA system showed that the feeling of telepresence is
greatly enhanced by the introduction of viewpoint adaptivity. The resulting motion parallax
is a promising feature yielding a positive subjective impression. Even test persons with low
expectations of 3-D techniques prior to our subjective tests, changed their opinion in favor
of 3-D after their experience with the PANORAMA system. From this we conclude that 3-D
aspects do and will contribute substantially in visual communication systems, since they
provide the viewer with more realistic and natural impressions.

7.2 Directions for future research
Although significant advances have been made in the past few years in the area of 3-D
visual communication systems, there are still many directions for future research.  Systems
on the basis of the multi-viewpoint concept such as the PANORAMA system, can be
enhanced in many ways. In the scene acquisition part of the system, two cameras in a fixed
setup were used to capture the scene. Ideally, their position, orientation and zoom may be
changed during the recording (as is usual in monoscopic recordings). The real-time
calibration of dynamic cameras is crucial and must be done by self-calibration. In chapters 2
and 3 we examined the most difficult case of self-calibration algorithms: using only two
images of a scene from two cameras. We found a way to circumvent a theoretical proof that
normally limits the use of such algorithms. Still, the reliability of our algorithm remains to
be improved. Applying our algorithm with a multiple camera setup may be a solution.
Further the speed of the algorithm must be increased several orders of magnitude.

Besides calibration, the acquisition of a scene in 3-D requires the estimation of
corresponding pixels in different images. In Chapter 4, we have derived correspondence
estimation algorithms for image pairs, especially suited for head-shoulder scenes in
videoconferencing. We used Markov Random Field models with a special version of
Simulated Annealing that, for the first time, combines high-quality with reasonable
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computation times. The robustness of this algorithm still needs to be improved, e.g. with a
temporal consistency constraint. In terms of accuracy, a major area of research is the
evaluation of our and similar algorithms with objective and meaningful quality measures.
The measures we used were subjective, enabling rough evaluation but no quantitative
comparison with other methods.

Further, multiple camera systems, possibly aided by other modality devices such as range
cameras, allow for the capturing of more complex scenes. The analysis of these images
requires improved image analysis techniques, e.g. better correspondence estimation
algorithms that can deal with more than just head-shoulder scenes. We also need to use
appropriate scene models, e.g. on the basis of light fields or wire frames. If all the
aforementioned issues are solved, it leads to reliable, flexible and fully automatic methods
for the real-time capturing of complex 3-D scenes.

For the 3-D scene visualization part of the system, The PANORAMA system used an image
interpolation algorithm. In Chapters 5 and 6 we showed that this is sufficient for
geometrically correct scene visualizations, whenever the viewer remains at a certain depth
and height with respect to the display. We derived the algorithm for full viewpoint freedom
and showed that it is possible to implement it also for real-time applications. Further, it
remains to be investigated to what extent the geometrical correctness of the visualized scene
is actually necessary. The more the requirement can be relaxed, the more freedom we have
in the setup of cameras and displays.

The development of displays still has many possible directions. The telepresence feeling
may be enhanced by higher resolution (shown in Chapter 6) and larger displays (e.g. room
size). In Chapter 5 we showed with a subjective test that a major increase in viewer comfort
can be established by a stereo display with better separation between left and right views.
Further, the eye lens accommodation cue still remains to be introduced. Also, the number of
people that simultaneously can see the scene undistorted is still limited. This may be
overcome by e.g. fixed multi-view displays that show so many views simultaneously that a
complete audience experiences the stereo and motion parallax cues without eye wear. Such
displays are already being developed now for a moderate number of viewers (about five).

The investigation of transmission of 3-D scene models using conventional transmission
channels is vital for the evolution of current monoscopic video systems towards 3-D
systems on a global scale. For broadcast TV applications, this involves e.g. the Mpeg-2
compliant coding and multiplexing of the image-based scene model that we discussed in
Chapter 6. Besides the TV application, other applications may come into play in this
evolution scenario. Normal interpersonal communication is still mostly performed by
phone. Ideally, the phone is replaced by the 3-D systems we examined, providing a wide-
scale application. For actual videoconferencing, it is expected that multi-point
communication is needed among much more than two people. Such applications are already
emerging as research topics, e.g. the European VIRTUE project.

In the more distant future, where the transmission standards may be redefined completely,
holographic systems may serve as the ultimate 3-D visual communication systems.
Holographic displays serve all three 3-D cues (stereo, motion parallax and eye lens
accommodation cues) for an unlimited number of people simultaneously. However, real-
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time acquisition of dynamical holograms will become possible only after technology has
made a giant leap in terms of signal processing power and transmission bandwidth. In the
meantime, the gap may be bridged by hybrid systems that acquire scenes with normal
cameras, transmit them via conventional channels, but visualize them with holographic
displays.



Appendix A

Geometry notation

A.1 Introduction
In this appendix we describe the notation used for geometry in this thesis. Sections A.2 to
A.5 deal with general features that are used throughout the thesis. Then, only for camera
calibration in Chapter 2, section A.6 deals with dot and cross products, and section A.7
deals with curved coordinates.

A.2 Reference frames, points and coordinates
Figure A.1 shows two right-handed Cartesian reference frames A and B, with origins OA and
OB. Two points P and Q are shown and a vector VP to Q from P to Q. All points have
coordinates in all reference frames:

P x P A

Q y Q B

x

y

A

B

coordinate of point  in reference frame 

 coordinate of point  in reference frame 
(A.1)

OA

xA

yA

zA

OB xB

yB

zB

P
QVP to Q

Figure A.1  Geometric notation.
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We denote all three coordinates by an index σ in the range {x,y,z}. Then, the A coordinates
of point P are denoted by:

P P AAσ σAll three coordinates of point  in reference frame  indexed by (A.2)

To be able to write the coordinates in the usual notation, we use the following convention:

P A

A
σ σ=

−















3

4

7

(the upper index  runs down) (A.3)

A.3 Vectors and components
A vector connects two points in space. It has no coordinates, but a difference in coordinates,
which we call components:

V Q P V AP Q P Q
A A A

 to  to  components of vector  in reference frame σ σ σ= − (A.4)

From (A.4) it is clear that a number, associated to the component of a vector, invokes no
less than three elements; A starting point, an endpoint and a reference frame. Only if all
three of them are correctly defined, such a number is meaningful. It is the goal of our
notation to make these elements very clear and to avoid mistakes.

A.4 Base vectors and matrices
The base vector in the xA direction is denoted by VxA

. Similarly, we can denote the other

two base vectors, and write their components in the B references frame as:

V
A

B

σ
σ (A.5)

In (A.5), the upper and lower index both run over {x,y,z} separately. The nine numbers
constitute what we call a base matrix. It relates the scale, rotation and skew between the A
and B reference frames. The matrix equals the partial derivatives of the coordinates of the
two frames:

V
x

yy
x B

A
A

B =
∂
∂

(A.6)

Switching the upper and lower index is equivalent with inversion of the base matrix.
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The components of an arbitrary vector V may be different from one frame to another, due to
their different base vectors. The following relation holds between the components:

V V VA

B

A Bσ
σ
σ σ= (A.7)

On the right-hand side of (A.7), the double use of σB in a product, once as upper index and
once as lower index, implicitly means summation over xB, yB and zB. This is called the
Einstein summation convention. Each index may appear at most once as lower index and
once as upper index in a product. In this way, no matrix can be inverted by accident, since
in (A.7) this would immediately give a conflict with the index of the vector.

The entries of the base matrix are denoted conventionally as follows:

V
B

A

σ
σ

π

σ

σ=
−

−

















→

↓
2 0

0 0 1

0 1 0
 B

A
(A.8)

Upper indices run downwards and lower indices run forwards. Two examples are:

V V
A

A

A

A

A

A

τ
σ

τ
σ

σ
σδ=

















= =
1 0 0

0 1 0

0 0 1

3 (A.9)

Here we see how the τ index can be used to prevent summation. The δ is the Kronecker
delta function:

 
if the indices are the same 

otherwise
δτ

σ =




1

0
(A.10)

The nine numbers in a base matrix are completely determined by anisotropic scaling,
rotation and skew. Scaling can be done simply by a diagonal matrix with non-unity entries:

V

s

s

s
B

A

x

y

z

σ
σ

; scale =
















0 0

0 0

0 0

(A.11)

Negative values indicate mirrored coordinates. Rotation has three degrees of freedom by
definition, but it influences all nine entries of the base matrix. We parameterize a rotation
matrix by three Euler angles ϕB

A;σ:
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cos sin

sin cos

cos sin

sin cos

cos sin

sin cos; ;

; ;

; ;

; ;

; ;

; ; (A.12)

A different type of parameterization is based on so-called quaternions [Azar95]. It avoids
the computation of sines and cosines, at the cost of introducing complexity (the
parameterization involves four real numbers and a constraint). We will use (A.12) since the
parameters are directly related to physically measurable angles. If (A.12) is applied in (A.7),
we see that rotation is performed first in the z direction (matrix on the right), then in the y
direction and finally in the x direction. Figure A.2 illustrates the sign of the angles.
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zB

ϕ B
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+

-
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yB

ϕ B
A z;

xA

yA

+

-
xA , xB yA , yB zA , zB

Figure A.2  Rotation between two reference frames.

Inversion of the rotation matrix (switching the indices) can be done by changing the sign of
the angles and reversing the xyz order of the matrices in (A.12). Skew can be modeled by
three numbers in a triangular base matrix (see Figure A.3):

V

k k

k
B

A

y
x

z
x

z
y

σ
σ

skew

1

; =
















0 1

0 0 1

(A.13)

xA axis = xB axis 

yA axis yB axis 

P xB

P y A P yB

P x A

P

≠

≠

=

k y
x

B

A

+-

Figure A.3  Skew between two reference frames via an upper triangular base matrix. Note that the xA

and xB coordinates are different and the yA and yB coordinates are the same, while the coordinate axes
suggest the opposite.
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In combination with scaling and rotation, other types of skew can be described, such as
those given by a lower triangular matrix.

A.5 Transforms between reference frames
The coordinates of a point P in two reference frames A and B may differ due to differences
in the position and orientation of the two frames. The relative position of the A and B frames
can be denoted by two different vectors VA to B and VB to A going from one origin to the other,
which have different components in the reference frames A and B. Thus, if no other
reference frames are considered, the translation can be denoted in no less than four different
ways. We will generally use the following notation that relates components to coordinates:

V OA B B
A A

 to 
σ σ= (A.14)

Then, using the base matrix from the previous section, we can relate the A coordinates of P
to its B coordinates.

( )P V P O

V P O

A

B

A B B

B

A B A

A

B

σ
σ
σ σ σ

σ
σ σ σ

= −

= +
(A.15)

This can be seen from the last two terms of:

( ) ( ) ( )P V V V V V V V V V V V VA
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O P O P O O O P O P O O O P O O
σ σ

σ
σ σ

σ
σ σ σ

σ
σ σ σ

σ
σ σ σ= = = + = + = − to  to  to  to  to  to  to  to 

(A.16)

If O and V are given with A/B indices in some up/down order, the other order can be
computed, V via matrix inversion, and O by multiplying it by -V. The latter can be seen if
one extracts the OA term in (A.15) and requires identity.

A.6 Dot and cross products
The dot product V1⋅V2 of two vectors is defined separately for each reference frame. For
frame A it is denoted by:

V V A V V
A A

A A
1 2 1 2⋅ (in frame ) = δσ τ

σ τ
, (A.17)

This yields a scalar. For V1 = V2, the dot product defines the square of length of the vector.
The cross product is defined as:

V V A V V
A A

A A A

1 2 1 2× = (in frame ) εσ τ
µ σ τ

, (A.18)
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The ε is known as the completely asymmetrical Levi-Cevita tensor, which is defined by:

ε
στµ
στµσ τ

µ
, = −









1

1

0

if  is an even permutation of 

if  is an odd permutation of 

otherwise (some indices are the same)

xyz

xyz (A.19)

The cross product yields a vector indexed by µ. If ε is applied to three vectors, it yields the
triple product that defines volume of the parallellopipedum given by the three vectors, see
Figure A.4.

The ε tensor always has a number of indices equal to the number of spatial dimensions
under consideration. If applied to two vectors in a two-dimensional space, the cross product
yields a scalar that defines area (see Figure A.4):

V V A V V V V V V
A A

A A A A A Ax y y x
1 2 1 2 1 2 1 2× = = − (in 2 - D frame ) εσ τ

σ τ
, (A.20)

V1

V2

V1 V2 = ε V1 V2×

V3

Volume = ε V1 V2 V3

V1

V2

Area = V1 V2 = ε V1 V2×

Figure A.4  The cross product measures volumes in 3-D spaces and area in 2-D spaces.

A.7 Curved coordinates
If two reference frames A and B have a base matrix that is not constant throughout space,
the coordinates of A and B are curved with respect to each other. Figure A.5 shows an
example in two dimensions. The coordinates in this example are related by:

x x

y y x

A B

A B B

=

= + 2
(A.21)
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Figure A.5  Curvature between A and B frames.

This yields a base matrix in which one entry depends on position:

V
y

x
xx

y A

B
BB

A = =
∂
∂

2 (A.22)

Curvature is characterized by a non zero curvature tensor V
A A

B

σ τ
σ

, (or V
B B

A

σ τ
σ

, ), which contains

the partial second derivatives of the coordinates:

V
y

xx x
y A

B
B B

A

, = =
∂
∂

2

2 2 (A.23)

Since the tensor is symmetrical in the lower indices, the number of independent parameters
is 6.
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Appendix B

Epipolar geometry

In this appendix we will describe epipolar geometry, which is a property specific to stereo
cameras. Here we will treat the basics, which suffices for this thesis. For more detailed
information about this topic, including extensions to three and more cameras, we refer to
[Faug93, Truc98].

Figure B.1 shows a stereo (pinhole) camera. The optical centers (centers of the lenses of
actual cameras) are OLFL and OLFR, the origins of the left and right lens reference frames.
The line through these two optical centers is called the baseline. Any plane in 3-D space
that contains the baseline is called an epipolar plane. All scene points in such a plane are
projected on a line in each of the images. These lines are the epipolar lines. A pair of
epipolar lines that share the same epipolar plane are called conjugate epipolar lines. If two
points from the image pair correspond, they must lie on conjugate epipolar lines. This is
called the epipolar constraint. It reduces the set of possible correspondence candidates for a
point in the left image from all points in the right image to only those on the conjugated
epipolar line in the right image.

baseline

epipolar
plane

left
CCD

right
CCD

OLFL

OLFR

conjugate
epipolar lines

Figure B.1  Epipolar geometry.

Figure B.2 shows the position of the epipolar lines for parallel and convergent camera
setups.
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(a) (b)

Figure B.2  Correspondences are constrained to conjugate epipolar lines, a) parallel camera setup, b)
convergent camera setup.

For pinhole cameras, the epipolar lines are straight. Due to lens distortion [Weng92] the
epipolar lines may become curved.
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Gibbs and Markov random Fields

In this appendix we describe the basic characteristics of Gibbs and Markov Random Fields
(GRFs and MRFs), sufficient for Chapter 4 of this thesis. For a thorough introduction to this
subject we refer to [Gema84].

Markov Random Field (MRF) models can be used to model interactions between a large
number of stochastic variables, arranged in a field or grid, on the basis of joint probability
models. We will use only discrete grids, which can be an image pixel grid ΛP or the ‘grid’
between adjacent pixels ΛS4. Adjacency is here defined by 4-connectedness on the pixel
grid. For correspondence estimation in Chapter 4, the correspondence field C is a field of
continuous variables on ΛP, and the discontinuity (edge-based segmentation) field is a field
of discrete (binary) variables on ΛS4.

In principle, the joint probability function of all stochastic variables can be used to model
all possible interactions between the field variables. Since the number of variables is in the
order of the number of pixels in the image (~106), this would lead to a tremendously
complex function, both in terms of modeling and computational aspects. In MRF models all
variables or grid entries interact with (depend on) each other only via their direct neighbors.
Figure C.1 shows typical examples of neighborhoods on the ΛP and ΛS4 lattice.

ΛS4ΛP

neighbors
entry Q

Figure C.1  Typical neighborhoods in a Markov Random Field.

In probabilistic terms, if all entries neighboring to entry Q are known, the probability
distribution for the Q entry does not depend on the rest of the field:

QofneighborsQentryQexceptentriesallQentry pp || = (C.1)
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Applying (C.1) to all entries in the field defines the joint probability for the whole field.
However, a practical problem is that the joint probability is not explicitly available. This is
solved by the introduction of the Gibbs Random Field (GRF), see Figure C.2. There is a
one-to-one mapping between GRFs and MRFs [Gema84].

Pjoint

?

MRF Pentry neighbors|

U joint

P
Z

e U= −1

GRFUcliques

∑

1:1

Figure C.2  Joint probability of MRF and GRF.

A GRF is defined in the energy domain U instead of probability p:

p
Z

eMRF joint
UGRF joint

 = −1
(C.2)

The joint energy of the GRF is defined as a sum of clique energies:

U UGRF joint clique
all cliques

 = ∑ (C.3)

A clique is a small group of field entries whose energy is a function of the field values. The
neighborhoods in MRFs are related to the cliques in GRFs. Figure C.3 shows the cliques
according to the neighborhoods in Figure C.1. The neighbors of an entry Q are all entries
that share a clique with Q.

ΛS 4ΛP

neighborhoods MRF

cliques GRF

pixels

neighbors
entry Q

entries

Figure C.3  Neighborhoods and cliques for ΛP and ΛS4.
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The normalization constant Z in (C.2) is called the partition function and is given by
(assuming a discrete valued GRF):

( )Z e U f

all different
fields f

GRF joint= −∑ (C.4)

Analytical computation of Z is impossible in general, and so is numerical computation,
since the space of all different fields is very high dimensional (in the order of 106). For the
successful use of GRF models, the application should not depend on the actual value of Z.

An example of a GRF model that enforces global smoothness on a correspondence field C
is:

( ) ( )∑ −=
cliqueaform
thatQPall

C QCPCU
,

2 (C.5)

The cliques are chosen as depicted in Figure C.3 for the ΛP lattice. The subtraction in (C.5)
computes the first spatial derivative of the C field in x and y directions for the horizontal
and vertical cliques respectively. Large variations in the C field yield a high energy UC,
which leads to a low probability for that C field, effectively smoothing the field.
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Appendix D

Marker detection algorithm

Our marker detection scheme is fully automatic, extremely robust and very accurate. It
measures the position of the marker centers in the images. The procedure is done separately
for the multiple views of the calibration object as well as for the left and right images. It
involves the following steps, illustrated by Figure D.1:

 • Finding regions of interest that possibly contain a marker.
 • Design of a parameterized ellipse model of a single marker inside a region.
 • Estimation of the photometric parameters for each region (e.g. SNR).
 • Detecting valid regions by a check on the photometric parameters.
 • Estimation of the ellipse position within each region.
 • Relating each ellipse with a marker on the plate by sorting all ellipses globally in the

8x6 grid, additionally discarding the remaining falsely detected regions.
 • Estimation of the marker centers Pi by incorporating curvature effects due to lens and

perspective distortion.

Get regions
of interest

Estimate photometric
parameters (SNR, ...)

Not
okOk

Estimate geometric
ellipse parameters
(position, size, ...)

ROI

Select and sort
8x6 ellipses

Plate
model

Refine with
curvature

Marker
positions

16157

23113

.

.











...

Figure D.1  The marker detection scheme.
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The algorithm contains two new localization refinement methods. After the markers are
roughly found by the center OR of each region R, a well-known method for finding the
marker center is the ‘center of gravity’ method, which determines the average of the image
coordinates in the region weighted with luminance, here denoted by Wlum. Our first
improvement uses the fact that the marker shape is (almost) an ellipse. We then replace the
luminance weight by a refined weight Wellipse that is less sensitive to noise. After the markers
have been sorted, we perform our second new refinement by determining the marker centers
while incorporating curvature effects due to lens and perspective distortions.

In the next sections we will deal with each step one at a time.

D.1 Finding regions of interest
In this step we will search for regions that possibly contain a marker. In subsequent stages
of the marker detection algorithm, we will detect if the region actually contains a marker or
some other object (a false alarm). In the latter case, the region will be discarded. In this
section it is thus vital that at least all markers are captured in a region, while it is less
important to keep the number of false alarms low.

The idea is to use the large luminance contrast between the markers and the plate
background, which produce luminance edges at the marker boundaries. When the size of the
luminance gradient |∇I| is calculated, we expect high values at the marker boundaries. When
we use a simple threshold |∇I| > T, we obtain a binary image IB which contains the marker
boundaries plus, e.g., the plate border and some background objects. Then we extract
4-connected objects in IB, of which the bounding box can serve as region, see Figure D.2. A
check on the region size rx , ry in pixels is a simple means to discard false regions. The
average diameter is defined as:

yx rrD += (D.1)

Then a good region is detected by:

D D Dmin max< < (D.2)

An upper bound for Dmax can be easily found, since eight markers plus seven inter-marker
distances must be within the whole image with size Nx , Ny in pixels. This scheme is very
attractive for its simplicity. However, two general features of cameras must be considered:

 • Slight defocus smoothes the luminance edges. This lowers the gradient and we may
miss a marker.

 • Image noise is also detected by the gradient.  For low noise, this introduces many small
false regions, which is no problem as they are discarded later. However, when too much
noise is detected, the false edges are starting to cover the image and may get
4-connected, even connecting two markers. Even if we are capable of finding one
marker in such a region correctly, we will miss the other marker.
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Figure D.2  Finding regions of interest by gradient thresholding and 4-connectedness.

This makes the choice of an appropriate T difficult or even impossible. Since we can easily
get around these two effects, we will stick to the simple threshold scheme. The defocus
effect can be circumvented by not using a [-1 1] or [-½ 0 +½] convolution filter for
calculating the x gradient (and a 90° rotated version for the y gradient), but e.g. a much
larger filter [-1 0 0 0 0 0 1]. As long as the filter length ngra (here 7) is smaller than the
ellipses themselves, but large enough to overcome the defocus smoothness, the gradient
value at the edges remains approximately k. The width of the edge in the gradient image will
equal ngra. The image noise can be dealt with by deliberately smoothing the image. We will
use a uniform filter with size nsmo. Whenever ngra > nsmo, the gradient value at the ellipse
boundary is not affected and remains approximately k.

The region of interest may be too close to the marker boundary, which may have as a result
that a very small part of the marker lies outside the region. This can be counteracted by
slightly enlarging the region by nenl pixels. This is not necessary when a large ngra is used,
because then the gradient operator already yields thick boundaries.

Finally, we have to select six parameters nsmo, ngra, T, Dmin, Dmax and nenl. Although the
number of parameters seems quite high, a single set of parameters is sufficient in all
practical situations (assuming an image resolution of about 500-1000, e.g. CCIR601
images):
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D.2 Ellipse model of a single marker in a region
Figure D.3 shows a region R of the image I in which a single marker resides. The image
luminance within the region is modeled on a pixel-by-pixel basis by:

( ) ( ) ( )RRRRRRRR yxnyxkWcybxayxI ,,, ++++= (D.4)

For this luminance model, we introduce the region centered 2-D reference frame OR with
discrete xR and yR pixel coordinates. Later we will need continuous coordinates to determine
the position and size of the marker with sub-pixel accuracy. Then we will use the
continuous image coordinates xI and yI from section 2.3.6. The I and R coordinates are
directly related by the position of the origin OR of the region, which is obtained in section
D.1.

yR

xR

µx

µy

OR

R

W = 0

W= 1

4 σ yy

4 σ xx

xI

yI

OI

xyσ

Figure D.3  The ellipse model of a single marker.

Whether a marker is present or not at a certain pixel is modeled by W. If W = 0, the pixel is
not covered by a marker, while W = 1 means that the marker covers the entire pixel. Any
value within [0,1] reflects the relative amount of pixel area covered. The a models the local
luminance of the plate. The k is the contrast with the marker (a+k is the marker luminance).
The b and c model possible non-uniform luminance in the region due to e.g. slight specular
reflections of the plate and the marker. The n models image noise, which we assume to be
zero mean Gaussian noise with variance σn, independent for each pixel in the region.

The marker presence W is modeled geometrically as follows. If circular markers are
projected to images, the apparent markers will be circles when the calibration plate is
parallel to the CCD (frontal view) and the lens is distortionless. If the plate is slanted with
respect to the CCD, the apparent markers will be ellipses. Even under strong perspective
distortion, where the closer part of the marker is projected larger than the farther part, the
projection is an ellipse. If lens distortion is also included, the shape may differ from an
ellipse.

We model the marker presence W by an object nearly shaped like an ellipse. With this, we
allow for deformations due to lens distortion and plate manufacturing (markers are not
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exactly circular). A perfectly ellipse-shaped object can be described in continuous image
coordinates I by:
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Here W is always 0 or 1, and r equal to:
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The µx and µy are the center of the ellipse in continuous I coordinates. The σxx and σyy

determine the size of the ellipse (see Figure D.3) and σxy its orientation. Points inside the
ellipse have r < 1, while points outside the ellipse have r > 1. At the ellipse boundary we
find r = 1. The marker projections are modeled as being almost ellipse shaped:
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For each pixel xR, yR, we take the I coordinates of its center (these are integers plus one
half), calculate r with (D.6) and then find W at that pixel. For r close to 1, we are near the
ellipse boundary and W is fractional. For δ > 0, (D.7) does not provide information about W
in a region with width w around the ellipse boundary. If w > 1, we have spared ourselves the
trouble of determining the fractional Ws at the ellipse boundary. For larger w, we also
incorporate the fact that the markers may not be fully ellipse shaped. Due to (D.6), the width
w differs around the ellipse. To get an impression, for circles (σxx = σyy, σxy = 0), we find for
small δ that w = 2δ√σxx.

D.3 Estimating photometric region parameters
For each region, we estimate the model parameters a, b, c, k and σn in the model (D.4). We
first divide the region in three areas, A0, A1 and A?, then define a number of summations S
on these areas, and finally estimate the parameters by combining the summations. We will
now elaborate on this process.

Figure D.4 shows the areas. The A0 area is defined as all pixels at the perimeter of the
region, where we know for sure that W = 0. The A1 area contains the 3x3 pixels in the
center, where we know that W = 1. The A? is the rest (and largest part) of the region. As we
are not sure about W in this area, we will not use it to estimate the parameters.
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Figure D.4  Three areas in the region.

The parameters can now be estimated using specific summations over the regions. For
example, we define:

S A x yA R R

x yR R
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(D.8)

where A0 is one if the pixel xR, yR belongs to A0. The S A0
yields the total number of pixels

in that area. Similarly we define e.g. (leaving out the coordinates for simplicity):
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This term on its own does not have much meaning, but by simple combinations we can
estimate the parameters:
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For the remaining σn we first construct so-called normalized luminance using (D.4):

( ) ( ) ( )RRRRRRnorm cybxayxIyxI ++−= ,, (D.11)

All variables on the right-hand side are known (image luminance I and the parameters just
estimated a, b and c). In the A0 area, the resulting Inorm contains only the noise. Then we
find:
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The minus three accounts for the fact that we have already estimated three parameters in the
area A0 (a, b and c). Then (D.12) yields an unbiased estimate of σn.

D.4 Detecting correct regions
We assume that specular reflection effects on the plate (non zero b and c) are reasonably
small. Quantitavely we require:

b < 1 c <1 (D.13)

Further we construct the Signal-to-Noise Ratio (SNR) and require:
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Most regions that have a perimeter with nonuniform luminance will fail to meet restrictions
(D.13) and (D.14). All correct regions with markers have a perimeter that is more or less
uniform and will pass the test. At this point, we check that we have ended up with at least
Nplate-markers (= 48) markers, otherwise the remaining steps are of little use.

D.5 Estimating the ellipse parameters
For the estimation of the ellipse parameters, we rely on the following which holds if the
marker is perfectly ellipse-shaped given by (D.2.5) and (D.3), and if the image pixels are
infinitely small (continuous image):
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For continuous images, the summations S in (D.9) become continuous integrals. We
approximate these by discrete summations like (D.9). As the coordinates used in the
summation terms are still the continuous xI , yI coordinates, we must define which point
within the pixel we use. If we use the center of the pixel, the xI and yI coordinates will



Appendix D  Marker detection algorithm214

always be an integer plus one half (see Chapter 2). In this case, the summations for the µx ,
µy and σxy parameters will be equivalent to continuous integrals over the entire pixel
(assuming constant luminance within a pixel). The expressions for the σxx and σyy

parameters will be slightly biased by 1/12, but we noticed no improvement compensating
for this.

In (D.15), we need W, but at this moment, we only have I. Hence, we first construct an
estimate of W on the basis of I and the estimated parameters:
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Here we used the Inorm defined by (D.11), but in this case for all of the region instead of only
at A0. If luminance model (D.4) is applicable, then Wlum = W when no noise (or luminance
discretization) is present. If noise is present, it will accumulate all over the region when the
summations in (D.15) are performed. If a threshold is used such as:
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only very rare outliers due to noise will contribute, at the cost of loosing fractional W at the
ellipse boundary. An often used compromise between (D.16) and (D.17) would be e.g. to
use sigmoid  thresholding, requiring the selection of the sigmoid steepness.

We will not compromise but combine the advantages of Wlum and Wthres. First we use Wthres

to estimate preliminary ellipse shape parameters with (D.15). Then we refine the three areas
A0, A1 and A? using the ellipse model (D.6)-(D.7), see Figure D.5. Then, we construct the
final estimate of W that uses the ellipse shape:

lumellipse WAAW ?1 += (D.18)

In this way, we used Wthres, which is insensitive to noise, in most of the region (due to its
effect on the area refinement), and Wlum, which contains the fractional marker presence, only
at the ellipse boundary. With (D.15) working on Wellipse instead of W we find the final ellipse
parameters.

The δ in (D.7) regulates w, which is the size of A?, in which Wlum is active via (D.18). It can
be seen as some sort of geometrical equivalent of the photometric sigmoid steepness
parameter discussed above. We found that when δ are used that produce A? with a thickness
of about w ≈ 4 pixels, the results are best. For circular markers, this can be accomplished
by:

xxσ
δ 2= (D.19)
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For ellipse shapes, the results are similar. Figure D.5 shows the complete procedure for the
ellipse parameter estimation.

I Wlum

A1

A?

A0

Wthres

Wellipse = A1+ A? Wlum

Normalize
luminance

to 0-1

Hard
threshold

at 0.5

Estimate
preliminary

µx µy

σxx  σxy  σyy

Refine
areas

Estimate
final
µx µy

σxx  σxy  σyy

Figure D.5  The ellipse parameter estimation procedure.

At this point, we have determined the position of at least 48 objects, which we will call the
ellipses Qj. If everything went well, 48 of those ellipses correspond to markers. For those
ellipses, the found position parameters localize a marker Pi already quite accurate.

D.6 Linking ellipses with markers in the grid
In this step, we find the 48 markers among all ellipses Qj, and arrange them in an 8x6 grid
to link them with the marker centers Pi of the calibration plate. The method is the following.
We construct all possible rows of eight ellipses and select the best six according to some
criterion. Within each row, we sort on xI position to get the column position c in [0,7]. Then
we sort the rows by taking the yI position of the first markers of each row. This yields the
row number r. Now all ellipses Qj have a row number rj and a column number cj. The
correspondence is then made by:

Q Pj c rj j
↔ +8

(D.20)

We select the six best rows of eight ellipses from all found ellipses as follows. First we
construct all possible rows L of eight markers, and choose the best with:
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( )LUL row
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Although the number of possible rows seems extremely large, this minimization can be
implemented very efficiently by means of a backtracking algorithm. The Urow function is
defined as:

( ) ( )∑=

L
QQQ

kjitriplerow

kji

QQQULU

rowin 
,,ellipses
econsecutivof

ssix tripleall

,, (D.22)

The Utriple function measures the second derivative of both photometric and geometric
ellipse parameters:
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This function yields minimal Urow for rows with neighboring ellipses in straight lines, with
similar interdistances, sizes, shapes and luminances. The σ parameters are not squared,
since their definition already includes a square.

The method only works when the number of markers per column (= 8) is larger than that per
row (= 6). If we use the columns in (D.21) instead of rows, columns may be found that are
actually part of a row or a diagonal. The dark background of the plate is large enough so
that no background object may form a competing row with seven markers from a real row.

Whenever a row is found, the eight ellipses are put aside and the algorithm is repeated with
the remaining ellipses. This continues until six rows are found. Since the ellipse centers Q
are now in correspondence with the markers, we will use the same index i for both:

Qi ↔ Pi (D.24)

D.7 Perspective and lens distortion
The 2-D image point that we are trying to locate is the projection of the point Pi, which is
defined as the center of the marker in 3-D or CF coordinates. This may not coincide with
the ellipse center Qi due to perspective and lens distortion [Heik97], see Figure D.6. We
will model this effect by taking into account curvature between the CF (calibration plate)
and I (image) coordinates. Note that unlike lens distortion, perspective distortion does not
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yield curved axes. It does change the length scale between CF and I coordinates with image
position, which is also called curvature mathematically.

OLF

CCD

Calibration
plate

2-D ellipse center 3-D circle center

1 pixel
1 projected pixel
area = G m2

IxV

IyV
IxV

IyV

Figure D.6  Curvature effects due to lens and perspective distortion make each CCD pixel project to a
different area on the calibration plate. This makes the 2-D center of the ellipse (projected marker) differ
from the projection of the 3-D circle (real marker) center.

The idea behind our approach is to determine how much 2-D marker area G measured in CF
calibration plate coordinates (meters) corresponds to each single pixel in the ellipse. We can
then recalculate (D.15) with (D.18) and G. At this point, we are only interested in refining
the position:
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If the size and shape parameters were also calculated, they would have meaning for the
actual markers on the plate. We would thus find that σxy ≈ 0 and σxx ≈ σyy, which hold
for circles. Via (D.25) we find an unbiased estimate of the projected 3-D center of the
marker. For the marker area G we find the following using Appendix A:
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At the right-hand side, we find the base matrix CF

I
V σ

σ . In this case only the x and y

coordinates are used in both the CF and I frames. The 2-D spaces of interest are the
calibration plate surface zCF = 0 and the CCD plane zI = 0. If the base matrix is a constant
with respect to image position, there is no curvature. In that case, G is a constant and the
result from (D.25) is the same as the earlier result for the ellipse center. This happens when
the plate and CCD are parallel, and there is no lens distortion.
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Assuming that the base matrix changes only slowly with image position, we can denote its
dependency on image position in a small region around each marker position Pi by a linear
equation:
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σ

σ
σ ,∆+=∆+ (D.27)

The ∆Ps refer to all points in the region around marker point Pi. At the right-hand side of
(D.27), the curvature tensor CF

II
V σ

τσ , appears as defined in Appendix A. To use (D.27) in

(D.26), we must estimate the both base matrix and the curvature tensor at each Pi. For this,
we first integrate (D.27):
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and then use neighboring marker points Pj around Pi as ∆P:
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For each Pi, we will use a 3x3 neighborhood of markers Pj closest to Pi. Except for the
markers at the border of the plate, the marker of interest lies in the center of the 9 markers.
Here, we will consider the latter situation, shown in Figure D.7.

Pi

∆P from Pi

to neigboring Pj

Figure D.7  For each marker, a 3x3 neighborhood is constructed to estimate the local curvature around
the marker.

Since we do not know the I coordinates of the markers Pi, we must resort to taking the
ellipse centers Qi as approximation to the marker centers:
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At this point, the only unknowns in (D.30) are the base matrix and the curvature tensor. The
former contains 4 parameters and the latter 6 (see Appendix A). For j = i, the equation is
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trivial, but for each of the other eight neighbors we have two equations (one for the xCF

component and one for yCF). Since (D.30) is linear in the base matrix and curvature tensor,
we can find them easily with a least-squares estimation technique using the 16 equations.

In the left-hand side of (D.30) the CF coordinates of the markers are present. Thus it seems
that this part of the algorithm needs the full geometric calibration plate model. However, it
does not require e.g. the 10 µm precision that our professional A1 sized plate has (see Table
3.1). We can approximate the plate model by a perfectly rectangular grid. The relative
errors are then e.g. in the order of 10-3 (the markers on the A1 plate are in an exact grid up
to about 1 mm), so they are completely negligible with respect to the off-grid effects due to
curvature as shown in Figure D.7. Also, since (D.25) is invariant with respect to scale
changes in G, the absolute scale of the grid need not be known. If we take the row and
column numbers as length units, we can use the following model for any plate similar to the
A1 and A4 plates from Table 3.1:
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In order to compensate for the approximation from (D.29) to (D.30) we perform the
curvature refinement algorithm two times: first with the ellipse centers, and then with the
marker positions obtained in the first run.
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Summary

In the area of visual communication systems, much research effort is currently being put in
the enhancement of quality and telepresence or immersiveness. Using very large displays or
incorporating 3-D effects for example may cause enhanced telepresence. It is expected that
this leads to communication systems that serve as alternatives for the conventional phone in
interpersonal communication or for videoconferencing in order to reduce business
travelling. Many other applications benefit from enhanced communication systems, in e.g.
medical, industrial, entertainment and advertising areas.

In Chapter 1, we reviewed 3-D systems, ranging from the classic stereoscopic systems to the
futuristic holographic video systems. The task of these systems is to introduce visual cues
that are related to depth perception and not incorporated by conventional monoscopic
displays. We identified three such cues. The first is the stereo cue, which means that the left
and right eye of a viewer see a different image. This cue was already introduced long ago by
the classic stereoscopic systems. The second cue is motion parallax. This means that
whenever the viewer moves his head slightly, the images shown on the display will change
also. Nearby objects appear to change more than objects that are far away, which is the
additional depth cue. Further, the viewer can now ‘look around’ objects, providing the
freedom to select a viewpoint of interest. The motion parallax cue requires adaptivity of the
images shown, which has become possible only recently with the advance of digital signal
processing. The third and last cue is the eye lens cue. This means that the eye lens actually
focuses on the object that the viewer is looking at. All displays for video material do not
serve this cue yet; regardless of the depth of the object one looks at, the eye lens focuses at
the display plane. Holograms produce the eye lens, but the current state of technology does
not allow for real-time holographic video systems with natural images.

We focused on adaptive multi-viewpoint systems. These provide a viewer with stereoscopic
images, such as produced by a conventional stereo system, but also with motion parallax.
We have considered a system on the basis of stereo equipment, that is, two cameras record
the scene and a stereo display shows the scene. In between, a large amount of signal
processing is needed to introduce viewpoint adaptivity. For the first time, such a system has
recently been built in the European PANORAMA project, enabling real-time processing for
a videoconferencing application.
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We dealt with the signal-processing parts of the adaptive multi-viewpoint system as well as
the integration of these components into the PANORAMA system. At the transmitter side of
the system, stereo camera calibration and correspondence estimation are used to acquire a
3-D model of the scene. At the receiver side, viewpoint-adaptive stereo image synthesis is
used for the visualization of the 3-D scene model.

In Chapter 2 we have extensively examined the modeling of stereo cameras. We introduced
a new tensor-based notation that makes it easier to pinpoint the differences and similarities
of the camera models currently available. Further we investigated lens distortion in great
detail. The main reason to introduce it in camera models is to make the models more
accurate. Besides this, we conjectured that it may also help to circumvent a theoretical proof
that restricts the use of self-calibration.

In Chapter 3 we investigated stereo camera calibration algorithms. In this area, fixed
calibration methods have come already to a level of maturity, while research is focusing on
the more flexible but also more complex self-calibration methods. We proposed an
algorithm for fixed calibration and derived a self-calibration algorithm from it, thereby
unifying the two approaches. The algorithms have been designed in the Bayesian
probability framework. Our experiments show that the fixed calibration provides model
parameters that enable us to acquire a 3-D scene highly accurately. Our self-calibration
algorithm deals with the most difficult case at hand: measuring all camera parameters
without prior information, on the basis of only two images. In several experiments we found
that the theoretical proof that limits self-calibration is not valid for cameras that include lens
distortion, which opens the door to more generally applicable self-calibration algorithms.
On the other hand, we found that the method is inherently unreliable. Now and then we
found that the parameters were wrong compared to a ground truth with synthetic material.
We could only observe this due to our approach with synthetic material. In other approaches
that lack a ground truth false results may be obtained that appear accurate. A thorough
investigation when the self-calibration approach including lens distortion works and when
not, is an open research area. If solved, it may lead to reliable use of self-calibration
methods, even in the most challenging case of single stereo image pairs as input material.
Further, other existing self-calibration techniques must be evaluated also with synthetic data
including the ground truth, to validate their true accuracy.

In Chapter 4 our goal was to derive a correspondence estimator that provides high quality
and enables real-time implementations. We first reviewed many approaches to
correspondence estimation (CE) and found that the Bayesian algorithms on the basis of
Markov Random Fields (MRF) are the most promising regarding the quality. In the
Bayesian framework, we found a new way to combine the hierarchical approach with the so-
called cooling schedule in Simulated Annealing (SA) algorithms, in order to reduce the
computation times by an order of magnitude. Using this framework, we derived two new
algorithms: one for images from calibrated cameras, and one for uncalibrated stereo
cameras. With the algorithm for calibrated cameras we obtained high quality 3-D models,
judged by visual inspection. Further, the algorithm for uncalibrated cameras was able to
cope with large differences in rotation and scale between the cameras. We made a major
step towards real-time implementations with MRF algorithms, since the computational load
of both algorithms was orders of magnitude lower than conventional algorithms due to the
combination of the hierarchical framework and the SA algorithm. Many future research
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directions are still open. The robustness of the algorithms can still be improved, since about
5% of the runs did not converge to the right solution. Our algorithm still needs to be applied
to a self-calibration algorithm. Further, Bayesian correspondence estimators are ideal
algorithms to be extended, by e.g. incorporating temporal consistency constraints and other
image-processing techniques such as image restoration. For these combined algorithms, the
computational resources at this moment allow only implementations that perform the
estimation on a one-by-one pixel basis instead of estimating all data simultaneously, which
implies a causality constraint. Finally, a major area of research is the evaluation of our and
similar algorithms with objective and meaningful quality measures. The measures we used
were subjective, enabling rough evaluation but no quantitative comparison with other
methods.

In Chapter 5 we derived an image synthesis algorithm that theoretically ensured
geometrically correct visualization of 3-D scenes on stereo displays, able to be viewed from
any position. In literature, many synthesis algorithms have been derived for the generation
of virtual camera images, which is slightly different from our application and does not lead
to correct scene visualization in general. Further, we examined in detail many sources of
error that contribute to deviations in the geometry of the visualized scene. These include the
effects of tracking errors, that is, errors in the measured viewer position, and rendering
latency. These analyses are new for the area of multi-viewpoint systems. Several rules of
thumb have been derived that enable a quick analysis, whether certain tracking errors or
system latencies are visible or not. An extensive subjective test was performed that
validated these theoretical findings. We also noticed that other means of interaction besides
viewpoint adaptivity are needed in order to visualize 3-D scenes. These are (manual) means
to manipulate the position, orientation and the scale of the scene, e.g. in order to display a
very large scene on a normal sized display, or to see the rear side of a scene. An important
result from our test is that both stereo systems and viewpoint-dependent systems were
preferred over conventional monoscopic systems. The motion viewpoint dependency was
said to enhance the visualization quality more than the stereo cue. Both statements argue for
the incorporation of 3-D aspects in visual communication systems. There are several
directions for future research. A major increase in viewer comfort can be established by a
stereo display with better separation between left and right views. Further, although it was
not found disturbing, the rendering latency of our system was clearly noticeable. This may
be counteracted by means of the fast rendering techniques that are emerging in similar
applications, like augmented reality systems.

In Chapter 6, we discussed the integration of all system components into the PANORAMA
system. First we introduced a new image-based scene model that forms the heart of the
PANORAMA system. It enables a real-time system implementation, and at the same time
high quality scene models (in the order of 106 points). Then, we derived system settings in
order to achieve a geometrically correct 3-D impression, while complying with all
feasibility constraints of the real-time system. A constraint of more principal nature was
identified for two-way videoconferencing applications with image interpolation algorithms:
the recording cameras must be attached left and right of a display in order to provide direct
eye contact, and thus the baseline is slightly larger than the display width. Together with the
conditions for correct scene visualization, the stereo camera setup must be chosen carefully
in order to have any overlap between the images and be able to acquire the scene in stereo.
Extensive subjective tests have been conducted with the PANORAMA system. The main
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result of these tests is that the feeling of telepresence is greatly enhanced by the introduction
of viewpoint adaptivity. The resulting motion parallax is a promising feature yielding a
positive subjective impression. Even test persons with low expectations of 3-D techniques
prior to our test, changed their opinion in favor of 3-D after their experience with the
PANORAMA system. These tests showed that 3-D aspects do and will contribute
substantially in visual communication systems, since they provide the viewer with more
realistic and natural impressions.

In Chapter 7 we discussed the future of 3-D visual communication systems. The
PANORAMA multi-viewpoint system was the first real-time system to be realized, and
obviously, it can be improved both on conceptual and detail levels. More complex scenes
may be captured by multiple camera systems or other modality devices such as range
cameras. Reliable self-calibration algorithms are needed in order to have full freedom in the
camera setup and the possibility to change it dynamically. The analysis of multiple images
of more complex scenes requires improved image analysis techniques, e.g. better
correspondence estimation algorithms that can deal with more than just head-shoulder
scenes. We also need to use appropriate scene models, e.g. on the basis of light fields or
wire frames. At the visualization side, real-time visualization algorithms can be
implemented with unrestricted viewpoint-adaptivity and means for manual interaction.
Further, it remains to be investigated to what extent the geometrical correctness of the
visualized scene is necessary. The more the requirement can be relaxed, the more freedom
we have in the setup of cameras and displays. The development of displays still has many
possible directions. The telepresence feeling may be enhanced by higher resolution, larger
displays (e.g. room size) and better stereo separation between left and right views. The eye
lens accommodation cue still remains to be introduced. Further, the number of people that
simultaneously can see the scene undistorted is still limited. This may be overcome by e.g.
fixed multi-view displays that show so many views simultaneously that a complete audience
experiences the stereo and motion parallax cues, without eye wear. In the application area,
normal interpersonal communication is still mostly performed by phone. Ideally, the phone
is replaced by the 3-D systems we examined, providing a wide-scale application. For actual
videoconferencing, it is expected that multi-point communication is needed among much
more than two people. Such applications are already emerging as research topics. The
investigation of transmission of 3-D scene models using conventional video transmission
channels is vital for the evolution of current monoscopic video systems towards 3-D
systems on a global scale. In the more distant future, where the transmission standards may
be redefined completely, holographic systems may serve as the ultimate 3-D visual
communication systems. They solve many of the aforementioned limitations. At this
moment, prototype holographic systems are available for real-time dynamical scenes.
However, the synthesis part of such a system requires a massive parallel supercomputer,
while only synthetic scenes can be shown on a display with the size of a human hand. Real-
time acquisition of dynamical holograms is not yet possible. In the meantime, the gap may
be bridged by hybrid systems that acquire scenes with normal cameras and visualize them
with holographic displays.
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Multi-viewpoint systemen voor 3-D
visuele communicatie

Op het gebied van systemen voor visuele communicatie wordt op dit moment veel
onderzoek verricht. Het doel is hierbij het verbeteren van de algemene beeldkwaliteit en het
verhogen van de zogenaamde tele-aanwezigheid, ofwel het gevoel werkelijk aanwezig te
zijn bij de getoonde scène. Dit kan bijvoorbeeld bewerkstelligd worden met zeer grote
beeldbuizen of met het aanbrengen van 3-D effecten in de getoonde beelden. Het is te
verwachten dat zulke systemen aantrekkelijke alternatieven zijn voor de ons welbekende
telefoon, of voor videoconferentie systemen om het zakenreizen te verminderen. Tal van
andere applicaties heeft ook baat bij verbeterde videocommunicatie systemen, bv. voor
medische, industriële, amusements en reclame doeleinden.

In hoofdstuk 1 namen we 3-D systemen onder de loep, uiteenlopend van de klassieke
stereosystemen tot holografie. Het doel van deze systemen is om in beelden visuele
kenmerken te introduceren, die gerelateerd zijn aan het waarnemen van diepte en die nog
niet in gewone monoscopische videosystemen aanwezig zijn. We vonden drie van deze
kenmerken. Het eerste is het stereoscopische kenmerk, wat inhoudt dat de kijker een ander
beeld ziet met zijn linkeroog dan met zijn rechteroog. Lang geleden was dit al
geïntroduceerd in de klassieke stereosystemen. Het tweede kenmerk is bewegings-parallax.
Dit betekent dat als de kijker zijn hoofd beweegt, hij ook daadwerkelijk de scène vanuit een
andere hoek waarneemt, waarbij objecten ten opzichte van elkaar een andere positie zullen
innemen. De relatieve beweging van objecten is gerelateerd aan hun onderlinge diepte,
hetgeen de kijker diepte-informatie verschaft. Dit kenmerk vereist dat de getoonde beelden
voortdurend worden aangepast aan de kijkerpositie, wat pas sinds kort mogelijk is dankzij
de vooruitgang in de digitale beeldbewerking. Het derde dieptekenmerk is gerelateerd aan
het scherpstellen van de ooglens aan de diepte van het specifieke object waarnaar gekeken
wordt. Alle huidige displays voor bewegende beelden zijn nog niet in staat dit kenmerk te
genereren; de ooglens stelt altijd scherp op de beeldbuis, ongeacht naar welk object wordt
gekeken. Hologrammen zijn wel in staat het ooglens kenmerk te genereren, maar deze
kunnen nog geen bewegende beelden tonen van natuurlijke scènes.
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Wij hebben zogenaamde multi-viewpoint systemen onderzocht. Deze verzorgen de
stereoscopische en bewegings-parallax diepte-kenmerken. We keken naar systemen op basis
van stereo apparatuur, dat wil zeggen, twee camera’s nemen de scène op en een stereo
display toont de scene. Ertussen zorgt een grote hoeveelheid beeldbewerking voor de
bewegings-parallax. Zo’n systeem is recent voor het eerst gebouwd in het Europese
PANORAMA project, resulterend in een 3-D videoconferentie systeem.

Wij hebben alle delen van de beeldbewerking onderzocht inclusief hun integratie in het
PANORAMA systeem. Aan de zendkant worden stereo camera calibratie en
correspondentie-schattingsalgoritmen gebruikt om een 3-D model van de scène te
verkrijgen uit de opgenomen beelden. Aan de ontvangkant wordt een adaptief, stereo
beeldsynthese algoritme gebruikt om het 3-D model te visualizeren voor de kijker.

In hoofdstuk 2 onderzochten we het modelleren van stereo camera’s ten behoeve van
calibratie. We introduceerden een tensor-gebaseerde notatie die het ons makkelijk maakt
om verschillen en overeenkomsten aan te duiden in de grote hoeveelheid beschikbare
cameramodellen. We hebben lens vervorming tot in detail bekeken, omdat we vermoedden
dat dit naast een kwantitatieve verbetering ook kan leiden tot een meer flexibel gebruik van
zelf-calibratie algoritmen.

In hoofdstuk 3 bekeken we camera calibratie algoritmen. Op dit gebied hebben de
zogenaamde gefixeerde calibratie algoritmen al een status van volwassenheid bereikt, en
concentreert het onderzoek zich op de meer flexibele maar ook meer complexe zelf-
calibratie algoritmen. We hebben een algoritme ontworpen voor gefixeerde calibratie en
leidden daaruit een algoritme af voor zelf-calibratie. Hiermee unificeerden we beide
aanpakken. De algoritmes zijn volledig ontworpen binnen het Bayesiaanse raamwerk van de
kansrekening. Onze experimenten tonen aan dat het gefixeerde calibratie algoritme camera-
parameters oplevert die ons in staat stellen om 3-D scène modellen van hoge kwaliteit te
verkrijgen. Ons zelf-calibratie algoritme ziet zich geplaatst voor de lastigste taak op het
gebied van calibratie: het meten van alle parameters van een stereo camera, zonder enige
voorkennis, en met alleen twee beelden voorhanden. In diverse experimenten vonden we
ons vermoeden bevestigd dat het modelleren van lens vervorming resulteert in een meer
algemeen bruikbaar en flexibeler algoritme voor zelf-calibratie. Aan de andere kant vonden
we ook dat de methode inherent onbetrouwbaar is. Zo nu en dan waren de gevonden
parameters volledig verkeerd. Dit laatste konden we alleen waarnemen door het gebruik van
synthetisch beeldmateriaal waarbij de ideale parameters beschikbaar zijn. In andere
aanpakken waar echt beeldmateriaal gebruikt wordt kunnen dus slechte parameters
gevonden worden die goed lijken. Een braakliggend gebied voor onderzoek is de
betrouwbaarheid van (bestaande) zelf-calibratie algoritmes.

Ons doel in hoofdstuk 4 was om een correspondentieschatter te ontwerpen die hoge
kwaliteit combineert met snelheid. Eerst bekeken we verschillende aanpakken en vonden
dat de Bayesiaanse algoritmes op basis van Markov Random Field (MRF) modellen de
beste kandidaten zijn gezien hun hoge kwaliteit. We vonden een nieuwe mogelijkheid om
snelheidswinst te boeken door de hiërarchische (HA) zoekmethode te combineren met de
zogenaamde koelings-procedure in Simulated Annealing (SA) algoritmen. Met deze
gereedschappen ontworpen we twee algoritmes: één voor al gecalibreerde camera’s en één
voor ongecalibreerde camera’s. Met het eerste algoritme verkregen we 3-D scènemodellen
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van hoge kwaliteit, beoordeeld met visuele inspectie. Het algoritme voor ongecalibreerde
camera’s kon omgaan met zeer grote verschillen in rotatie en schaal (zoom) tussen de
camera’s van het stereo paar. Voor beide algoritmes geldt dat we een grote stap hebben
gemaakt richting het gebruik van MRF-algoritmen in real-time toepassingen, gezien de
snelheidswinst geboekt door de HA/SA combinatie. Vele richtingen zijn nog beschikbaar
voor toekomstig onderzoek. De robuustheid van onze algoritmes kan verbeterd worden,
want 5% van alle resultaten was niet goed geconvergeerd. Onze algoritmes dienen ook nog
te worden toegepast in een zelf-calibratie algoritme. Verder zijn Bayesiaanse MRF
algoritmes ideale kandidaten om verder te worden uitgebreid met bv. temporele consistentie
restricties of gelijktijdige beeldrestauratie. Een groot gebied van onderzoek is het
ontwikkelen van een objectieve maatstaf om de verkregen 3-D modellen te evalueren.

In hoofdstuk 5 hebben we een beeldsynthese algoritme ontworpen dat een geometrisch
correcte visualizatie van 3-D modellen garandeert op stereo displays, waarbij de scène
bekeken kan worden vanuit ieder willekeurige positie. In de literatuur zijn al vele
soortgelijke algoritmen ontworpen voor het genereren van virtuele camerabeelden, maar
deze verschillen licht van ons algoritme en bieden dan ook in het algemeen geen
geometrisch correcte visualizatie. Verder bekeken we vele andere bronnen van fouten die
kunen bijdragen in geometrische afwijkingen. Hierbij behoren fouten van de
meetapparatuur voor de kijkerpositie en opgelopen vertragingen door de tijdsduur van het
beeldsynthese algoritme. Deze analyses zijn nieuw op het gebied van multi-viewpoint
systemen. We formuleerden diverse vuistregels om te zien wanneer de fouten leiden tot
waarneembare geometrische afwijkingen. Een uitgebreid experiment met testpersonen
valideerde onze theoretische bevindingen. Daarnaast vonden we ook dat nieuwe interactie-
methoden gewenst zijn in multi-viewpoint systemen, zoals mogelijkheden om de getoonde
scène manueel te verplaatsen, te roteren en te schalen. Een belangrijk resultaat was dat
zowel stereo als multi-viewpoint systemen werden geprefereerd boven conventionele
monoscopische systemen, waarbij het bewegings-parallax kenmerk meer zou toevoegen dan
het stereo kenmerk. Dit is een sterk argument voor het introduceren van deze 3-D
kenmerken in visuele communicatiemiddelen. Diverse richtingen staan nog open voor
verder onderzoek. Het kijkers-comfort kan nog aanzienlijk toenemen als de scheiding tussen
linker- en rechterbeeld van het stereo paar verbeterd wordt. Verder waren geometrische
afwijkingen door de beeldsynthese-vertraging niet storend maar wel duidelijk zichtbaar. Dit
kan verholpen worden door snelle renderingstechnieken toe te passen zoals al gebeurt in
bijvoorbeeld ‘augmented reality’ systemen.

In hoofdstuk 6 integreerden we alle systeemdelen tot het PANORAMA 3-D
videoconferentie systeem. Eerst introduceerden we een nieuw beeld-gebaseerd 3-D scène
model, dat de grondslag vormde voor het PANORAMA systeem. Dit model maakt een real-
time systeem mogelijk, waarbij ook de kwaliteit van de modellen hoog is (in de orde van
106 scène punten). Daarna leidden we de parameters af waaronder het systeem nog steeds
een geometrisch correcte 3-D visualizatie kon opleveren, waarbij tegelijkertijd aan alle
implementatierestricties werd voldaan. Daarnaast identificeerden we een restrictie die
optreedt in 2-weg communicatiesystemen wanneer interpolatie gebruikt wordt voor de
beeldsynthese, zoals in het PANORAMA systeem. De opnamecamera’s moeten dan aan
beide zendzijden links en rechts van het display gemonteerd worden, anders kan er geen
direct oog-contact gemaakt worden. De afstand tussen de camera’s is daarmee altijd iets
groter dan de breedte van het display. Samen met de voorwaarden voor geometrisch
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correcte visualizatie moet de stereo setup van de camera’s dan met zorg gekozen worden,
anders overlappen de camerabeelden niet en kan de scène niet in stereo worden opgenomen.
Uitgebreide experimenten met testpersonen zijn uitgevoerd met het PANORAMA systeem.
Het belangrijkste resultaat hieruit is dat het tele-aanwezigheidsgevoel aanzienlijk wordt
versterkt door de introductie van het bewegings-parallax kenmerk. Zelfs testpersonen met
lage verwachtingen van 3-D technieken, veranderden hun mening na de ervaring met het
PANORAMA systeem. Onze testen laten duidelijk zien dat 3-D kenmerken een grote en
gewenste toevoeging zijn aan visuele communicatiesystemen, aangezien ze de kijker een
meer realistisch en natuurlijk beeld verschaffen.

In hoofdstuk 7 bediscussiëerden we de toekomst van systemen voor 3-D visuele
communicatie. Het PANORAMA multi-viewpoint syteem was het eerste gerealiseerde real-
time systeem, en kan daarom uiteraard verbeterd worden, zowel op conceptueel niveau als
in details. Complexere scènes kunnen opgenomen worden door systemen met meer dan
twee camera’s, of camera’s met andere modaliteiten zoals afstand-camera’s. Betrouwbare
zelf-calibratie algoritmes zijn nodig om meer vrijheid te hebben in het kiezen van de camera
setup en de mogelijkheid om deze dynamisch te veranderen. De analyse van meerdere
beelden van een complexe scène vereist ook verbeterde beeldanalyse technieken,
bijvoorbeeld correspondentieschatters die meer dan alleen hoofd-schouder scènes
aankunnen. Ook het type 3-D scène model zal anders moeten worden gekozen, bijvoorbeeld
lichtveld- of draadmodellen. Aan de visualizatiekant kunnen beeldsynthese algoritmen
gebruikt worden met ongelimiteerde positievrijheid voor de kijker en mogelijkheden voor
manuele interactie. Verder dient nog onderzocht te worden in welke mate de geometrische
correctheid van de scène werkelijk nodig is. Hoe meer hiervan kan worden afgeweken, hoe
meer vrijheid we hebben in het kiezen van de setup van de camera’s en het display. De
ontwikkeling van displays kan nog vele kanten op. Het tele-aanwezigheidsgevoel wordt
vergroot door hogere resolutie, grotere displays en betere stereoscheiding. Het ooglens
kenmerk dient nog steeds geïntroduceerd te worden. Verder, het aantal mensen dat de
getoonde scène gelijktijdig zonder vervorming kan waarnemen is nog steeds gelimiteerd.
Dit kan mogelijk verholpen worden door multi-view displays die vele beelden tegelijk laten
zien, en zo verschillende kijkers tegelijkertijd de stereo en bewegings-parallax kenmerken
verschaffen. Op het applicatiegebied zal idealiter de telefoon worden vervangen door een
3-D video systeem. Voor videoconferenties zal een multi-weg systeem nodig zijn in plaats
van een 2-weg systeem, hetgeen nu al heeft geleid tot nieuwe onderzoeksprojecten. Het
onderzoek naar transmissie van 3-D scene modellen via conventionele videokanalen is
cruciaal voor de evolutie van de huidige monoscopische TV systemen naar een wereldwijd
3-D TV systeem. In de verder afgelegen toekomst, waar wellicht ook de
transmissiesystemen volledig zullen worden vervangen, kunnen holografische systemen hun
intrede doen als het ideale 3-D communicatiemiddel. Prototypes zijn op dit moment al
gemaakt, maar voor het synthesegedeelte zijn zeer grote supercomputers nodig en voor het
beeldanalyse deel is nog geen technologie. Dit gat kan wellicht worden gedicht met hybride
systemen die scènes opnemen met gewone camera’s en ze visualizeren met holografische
displays.
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